Making Sense of Testing...

Feb 14, 2012
60
0
6
13
OK... new 42 track is up and running and I'm testing to determine which is our fastest car.

NOTE: All cars are tuned to optimum steer based on testing times.

Last year's fastest car is Long wheel base, 3/4 COM, bent rear axles for cant, 3 wheel rail runner and lube is graphite with 1gm wheels. Car runs primarily in the lower 3.1xx - It did have a single pass of 3.089.

New Car #1 is short wheel base, 1/2 COM, drilled w/block for rear cant, 3 wheel rail runner, oil lube, 1.8gm wheels. Car runs mid/high 3.0xx to very low 3.1xx

New Car #2 is short wheel base, 1/2 COM, drilled w/block for rear cant, 3 wheel rail runner, oil lube, 1.8gm wheels. Car runs mid/high 3.0xx to very low 3.1xx... though seems to run more in the mid/high 3.0xx and has had the fastest run at 3.065

This snapshot was garnered over 50+ runs of all three cars on track at the same time and rotating lanes.

Unscientifically, I would assume that New Car #2 is the fastest car... it has the fastest pass and seems to run sub 3.1 more consistently. However, on occasions it will fall down.

Above and beyond determining the fastest car, I'm curious why the times vary so much. I haven't noticed one lane being faster than others.

Will 1g. wheels garner a sizable gain? And so far, I'm not all that impressed with oil. Though I'll probably stick with it due to the longevity over more runs.

I have ordered a Jewkes ESS starter as I can see where the manual gate is not real consistent.

If I determine I'm at a baseline of 3.085.... will 1g. wheels (add ballast for offset) knock much time off?

Should I stick with oil or try a new set of axles and wheels prepped for graphite.

Needless-to-say, I would love to knock out a sub-3. LOL

JT
 
The electric start gate is a must for tuning. The manual gate is super inconsistent! car can very as much as .015-.02 per run. Find the lane on your track that you like the best and do all your tuning in it. when done right lighten wheels can knock off around .03 which is huge. I would strongly urge you to send in a car to a race so you can get a baseline. It is one of the most valuable tools in tune your cars on your track.
 
[font="arial, helvetica, sans-serif"][font="times new roman, times, serif"]I can tell you I have learned a ton just watching the race videos. I watch them like a football team watches opposing team games and of them selves too. Then I ask questions here and there making sure to take notes. Really not enough info about your cars to really say for sure, like what wheels and axles, how they are prepped, inches of steer, body shape and size etc. However, I will tell you our winning car (1st at pack and district) last year was graphite with a standard wheel base and we were running about the same times as you are now. This years car is an oil car and I will say this...It blows the graphite car off the track. Oil takes less time and is by far cleaner[/font][/font]
 
Are you sure that your standard WB cars have 1/2" COMh and long WB car has 3/4" COMh ? Seems backwards to me. Remember that you can tune for drift, weight placement and staging position. In addition to picking a tuning lane, try to be consistent with staging until all else is optimized, then for league races you can tune for staging position.
 
quadad said:
Are you sure that your standard WB cars have 1/2" COMh and long WB car has 3/4" COMh ? Seems backwards to me. Remember that you can tune for drift, weight placement and staging position. In addition to picking a tuning lane, try to be consistent with staging until all else is optimized, then for league races you can tune for staging position.
you can fit more weight behind the standard wheelbase rear axle. so while it may sound wrong, you can get a more aggressive com with a standard wheelbase than with a extended one.
 
The long wb car is our car that lost the Council Championship in a tie breaker last year. It was the only run we took second place in all day. It was either staged poorly or the graphite gave out... it simply fell on its face the last trip down the track.

The new cars have axles and wheels prep per DD4H's DVD. I use a beam to check the COM... the new cars are 1/2" and the rear wheels are located as far back as possible. One car is 1/4" thick.... thinner down the middle.

This car is about 5/16 at the rear... very thin down the middle. It uses the adjustable tungsten disc with one 1/4" tungsten cube in the slot. The slot is locate at the rear axle pointed toward the rear. Behind the disc (at the back edge of the car we have an additional four 1/4" tungsten cubes.

6892989184_2384294a7d_b.jpg
 
hmmm
HMMM!!! I have seen some goofy staging that is a good possibility. Whos graphite are you using? There is a difference. I am going to have to side with Quicktime and say you need to send in the car...that really is some great advice!
 
Remember- the com we all discuss is NOT the correct measurement to calculate one car against another- you must change it to COM in relation to center of car!

hkLCwvhKsrTKiGnIidRygiO4+CniooKma6C41arlRzp7e2FYsvuhdZ8OouEIADWCQRBkDkSDAYLCwsZhsnLyysqKrJarQ0NDWTEbW9vlySJ53mz2QxHCgoKZGfYtm0b/GQ2m3WKGBpaVdDDvMfjMZlMcKShocFqtZaXl+fk5DAMs3LlSkEQtE8rUwz0QdlkDBExeXl5vb29ypITEeN0OkHq5eTkVFVVQZGWLVvGMExubi65d51FQhAA6wSCIJmOz/eF3f5eJvwXDt+lC9bY2MgwzLJly44fPy5GCQQCy5cvh9Ga53laxOTk5Ph8PpI9HA7n5OSAtognYtra2iCvSEGP68RDRA/zVqsVhEUgECC5Ojs7Ic3Q0JAYi/ISoijCqYLBIPxaVlbGMExbWxtdPCJi4HL0LdAiJhgMgqgqKCjw+/3kEn19fXD7FRUVdC4xDilWJGTxgSIGQZBMx+f7wmr9Mc/fTPt/dKmCwSAMwLW1tbICf/TRR/CTy+WiRQwT61Hq7e0lxxOKGPqgKIojIyNw3Ol0wkGliKEljiRJ4XB49erVDMP87d/+rewqGvMcDocDfiV/0OEvIGJKSkqIFiFOJVrE9PT0gIYbHh6Wnd9sNufk5Dz66KMJS4IgSrCuIAiS6QjCPYapFoR76S5IDC6XC0bcM2fOKH/1+/2RSESKdScBZJgvLy+fm4gBaJUgxQ7/RB4VFxf39PR4PB5QM/GmNOJdAkJ6SbGJmiEJQMSYzeZHH32UiXUq0cUjXjPlJUKhEEwXaZcEQVTBuoIgSBZgtf7Y5/si3aWIgcxMqIoPAhExu3fvLiwszMnJgbASmMgpLCyEWZM5ixjyE/23IAhVVVV5eXlMNHjWZDJt2rTJ6XQqlzVJ8aWDx+OBn0ZGRkiysrIychIiYi5evAi/EqcSLWJkRdUAkuHqJEQnKGIQBMkCOM7ldH6S7lLE0NfXl5SIcTgcRUVFDMO88cYbUnSypKioiOiAZEWM7CdZskgk0tvbW1BQAKHHRBzs3LlTqWPiXYJMw/h8Pp7nBwcH4Z8kvJcu/MDAAO1UUooYs9msYSi6JPFImB1ZamCdQBAkC+D5mxbL/nSXIgbiTqJjdQnBYBA8OLSIIaG1giDAwc7OzjmLGNnQTv8NAcWCIIii6PV6BwYGamtrSfrW1lbVU8kOhsNhWv3Qq6PJpIis8OA2AqcSLWKqq6s1VIgyHBgDexGdoIhBECQ7YJhq2eKg9MLzPEw89PT0KH+FIb+9vZ0WMT6fDzxKTqfTZDKZTCae5+cmYojCOHr0KBwhyXieN5lMLMsePHiQpIdlU/GmNFQPOp1OjUkRCO+VFZ5cAjxZRMSAyywnJ0e5J97Q0FBubi7LsrAtHs64IEmBdQVBkOzg6NFTHs94uksxC/GYFBQUyBw0Q0NDoG96e3tpESNJEniUYEqjvLxcUugAGfFETFdXFxwnnh2SLBwOwxrvjRs3ygq2ceNG/SKGzLv4KbxeLxyE21EWfmBggCgYImLInn7798dMpwmCAJM3oOfilQRB4oF1BUGQ7MDlGnE4Tqe7FDGQAbuiomJoaAicOIcOHSIb+IbDYZmIIR4lkDiSbhHDUdCeHZKS/ifZc2/nzp0QzsLzvM1mg9LKlISkJh1ISO/AwIBqYpZlBUFQLTxZi0REjCAIJSUlDMMsW7astbUViuTxeCoqKuhkqiVBEA2wriAIkh0Eg38qK3s13aWIARYBkUF9w4YNGzZsgH+SPVFkIgY8SgzlW9EWMUQN0It0yMFAICBLCX8HAoGCggI4AuuSyAa+BQUFSp+OUjqQmR5lYrJFjcvlUi18IBCQuZMkSfJ6vTA7pSzS6tWrYTm6hKuTkCRBEYMgSNZgsewPBv+U7lLEEIlEDh48yDAM+f5ASUmJ2Wy+cuUKJCA73vb19cER2FLl6aefhn+STW+T/ewArWAkhRAJBAIwHwN6AiZCGhoaZLlU80qUL0mZmPjR2tra4hV+YGAAjjc3N5ODfr//6aefJkWCT0o1NDSEQiE996taGGSJg3UCQZCsweE47XKNpLsUcmDhDIkaobduoxPI/qk8onFyPUt1lAdFUQyFQqRgoVBI+yqq19UulUbhVc8gK1IkEol3XVydhOgBRQyCIFmDxzPe1vZeukuBIEimgCIGQZCsIRy+yzDV6S4FgiCZAooYBEGyCfgSZLpLgSBIRoAiBkGQbMLp/CTTvj+AIEi6QBGDIEg24fN9YbX+ON2lQBAkI0ARgyBIlsEw1YJwL92lQBAk/aCIQRAky2hre8/n+yLdpUAQJP2giEEQJMvgOFemfX8AQZC0gCIGQZAsIxj8k8Ui//oPgiBLEBQxCIJkH2Vlr4bDd9NdCgRB0gyKGARBso+urlMZ+P0BBEEWGBQxCIJkHy7XSFfXqXSXAkGQNIMiBkGQ7CMcvltW9mq6S4EgSJpBEYMgSFZisewPBv+U7lIgCJJOUMQgCJKVOBynOc6V7lIgCJJOUMQgCJKV+HxftLW9l+5SIAiSTlDEIAiSlQjCPfz+AIIscVDEIAiSrVitP8bvDyDIUgZFDIIg2YrT+YnT+Um6S4EgSNpAEYMgSLbC8zet1h+nuxQIgqQNFDEIgmQxDFON3x9AkCULihgEQbKYo0dPeTzj6S4FgiDpAUUMgiBZjMs14nCcTncpEARJDyhiEATJYoLBP1ks+9NdCgRB0gOKmCVEMBj0eDwcx/l8vnA4rDNXOByGXB6PJ16ucDjscrk4juN5XhAE44qMIIkpK3sVvz+AZCPV1dXpLkLWgyJmSSAIAqvG3HLRMkU1jcuFm8EjC4fDcdrlGkl3KRAkaSwWS7qLkPWgiFkSsCzLqKGtY/TkUk2jRyEhiFF4PONdXafSXQoESRoUMamDImbx4/P5iLzw+/2iKNKCIxgMJszFMIxqLpmC8fv99D95nl/YG0Xml4yd+g6H77JshpYNQTRAEZM6KGIWPxzHgaoYGZmZcqcVicfjUc1FCxRRFGW5OI6TJEmmcmRpEtB2Fx8AACAASURBVE7GhMPhwcFBh8MBwTT0cZ7n4YjH43E4HA6Hg5RTEASXy9XX18dxXDwFhswHmdzhWiz7ef5mukuBIMmRyW0qW0ARs/ghcoRWFQlFDC1QlAdlIiYSiZA0kUhEmVGGIAiHDh0ymUwkjCY/P7+xsRGibRwOB8uyJpNp3bp1+fn5kODhhx/euXOnx+PZtGkTyZifn9/Z2Zm6iRA9ZHKH63R+wnEYiYVkGZncprIFFDGLn5GREaIqfD4fz/P0LEu8BUe0b8jj8fA873K5ZK6ieGIloYh58cUXIUFhYSH5P8MwjY2NkiQ5HA6GYfLy8sj/TSYT0WGQHo4zDJOTkzM0NGSctZC4ZHKH6/N9gd8fQLKOTG5T2QKKmCUB7eKRBbLoz0VnlCWgnUE8z2uffGhoKCcnh2GYgoICiNHx+/0FBQUgVnw+H4gY4Pz585FI5Pz580THFBUVeb3eQCBQVVUFRxoaGowzFRKXTO5wBeEew1QLwr10F0Qvp06d+tOfcFn4UieT21S2gCJm8SMIAhMHEiWTVC6liGFZlszWKLWOjNraWvj1o48+IgeHh4dhcsXpdBIRc+TIEZLAbDYzDFNYWOj1euGI3+8vKSlhGCZjA04XGRne4ba1vefzfZHuUujlvffeu3kTg3iWOhneprICFDGLH9nUi9frpcWHz+dLNhcTjaQJhUL0qXRO88BPJSUlsrBcmJWRou4kJhp5A1RXV8vOyfM8KBsUMQtDhne4HOfKou8PoIhBpIxvU1kBipjFD60q9K8h0pmL0UT7zPEKTEQM7aVCEZN2MrzD5fmbWfT9ARQxiJTxbSorQBGz+IGxv62tDbQIEAgEdEoNOhetY8gRejkSE7tbjPaZZcfJJwtQxGQmmd/hlpW9Gg7fTXcpdIEiBpGyoU1lPihiFj+qoiEcDs9NatDHiQspFAqJUTwej/aZQXmsWrWK1ijk8wV1dXUoYjKTzO9wu7pOeTzj6S6FLlDEIFI2tKnMB0XM4odICloTJAy/Jb/SH0KS5SJ/E+8SaBHtM+/fvx9+3b9/dvJ/aGgIAns7OztRxGQmmd/hulwj2fL9ARQxiJQNbSrzSSxicClgtkNLDZZlOY5TDb+VfRVSTy76n8o0tB+KJhgMQoKcnJyWlpYzZ84cOnQoNzcXjvA8jyImM8n8DjccvltW9mq6S6ELFDGIlA1tKvNJLGKwsWU7spgVmRYhUkOmaWQfS1LNpXHmQCCgUaTh4WHYKobOlZOTc/78eSmZmJjS0lIUMQtGVnS4Fsv+YDALXrqwX0WkLGlTGQ6KmCWBTJGoTpbIRIzOXDIdA9BfIYiH3+/fu3cvybJt27YrV67AT7/5zW+qq6urq6vpNdjHjx+vrq6ura0lR8LhcG1tbXV19fHjx1MxDqKTrOhwHY7TLlfc3Y8yB+xXESlL2lSGgyJmqSCqoZogqVyqaeZWJOVPqukTJkPmiazocD2e8ba299JdisRgv4pIWdKmMhwUMQiC6CIrOlz4/kC6S5EY7FcRKUvaVIaDIgZBEF1kS4drtf44878/gP0qImVPm8pkUMQgCKKLbOlwnc5PnM5P0l2KBGC/ikjZ06YyGRQxCILoIls6XJ/vC6v1x+kuRQKwX0Wk7GlTmQyKGARBdJFFHS7DVAvCvXSXQgvsVxEpq9pUxoIiBkEQXWRRh9vW9l6Gf38A+1VEyqo2lbHMo4jx+Xw9PT2bNm1qb2+fQ3YEQTKKLOpwXa4Rh+N0ukuhBYoYRMqqNpWxGCxiBEHw+XyHDh0qLi6G7eqdTid8mhjJTHiepzfGNZBwOKx6ZrhiMBiEBOTj1UiGk5kdLqlO9MFg8E8Wy/54WTIBFDGIlKltKrswRsQIguDxeFpaWliWhY/gMAzT0NCgvfc8kkaCweDOnTtZlt2wYcPKlSuLi4udTmfCXENDQ6wapaWldDL4iBJNOByGn3ieV2anvzGJGIggCGfOnJEN8HMmAztcn89HapHsNjN8314UMYiUkW0q60hJxITD4aGhobq6OpZlV6xYQbaQLykpGR4exq1UM5ZgMFhYWCj7VkBubm5Cxx/5ALUSkgZGFNmvRMfwPK/My3Hc/N7wUkUQBKvVyrLsE0880dnZ6fP5Ujnb3Dpc8oYzH25luqaRb5fOK8Fg8Jlnnunt7U1RGqKIQSQUMUYwFxETDAadTuf27dtXrFghG67y8vJOnjyp59M5SBppbGwkXyzyer0fffRRQUEBwzAmk8nj8WhkhK9GK1m/fj0kUNUo9BiDImaBEUXR6/WazWYQl8XFxYcOHfL5fHNw4SXV4cIbDsz2sSxrtVrJbJxRhMNhWUVaGL/k0NBQQUFBitIQRQwioYgxgiRETDAY7O3traioyM3NVb5qm0wm9B9lBaTrLygoIHJzeHg4Ly+PYZiGhoaEGWtra+N9L4l8gJphGDgeCoXIkXA4HAwGlSJmnoJyEEIkEhkYGCAGhybc0tLi8Xj0D/x6OlzlG47ZbL5y5cp8zMtyHKcqlOOhGj0zNyKRyMGDB+GKjzzySHFx8YEDB5IyJooYREIRYwSJRUxra2tra2txcXF+fr5SuwBFRUXoP8oWgsHg7t27S0pK6I8/8zxfUlLCMEx1ddzvzvh8PhA6PT098dKQGkLPxsnGGPj7/fffv3jxIhE3Bt0cokUgEGhoaDCZTOSJgNSoq6sbGhpK+BQ0Otx4bzjzOi9LLkTrM2UyQRA6OztJ+JfJZCouLh4aGkrx6qIo+v3+bdu25eTkzEEaoohBJBQxRpBAxHg8HlXVQgODn2q8J6JkYZ6rNrKPP0MvD09z//64azp6enogzXPPPUdu57XXXiPzKGSqpq2tjc7o9XrpMcZisTAM43K5wLVUVlY2P3eJqCCK4vDwMLRZGniaO3fuHBwcjDdXoexwfT5fZ2en8g1nAeZlab+kRAll5ayezWaDsuXl5ZWWlhLB0dvbm3oxRFE8f/48eGOVxtSQhihiEAlFjBEknon5yU9+0tfXV1VVBW/hqhQUFJw/f17pYkCULMBD1Y/P53vppZdgPTw8R43J9traWtWnbzKZ3G63RI0rMhEjG29CoZDf74ef/H5/KBSaz1tEVIhEIidPnlRt0SzL5ubmVlRUKGNXocOFQN0DBw4UFxc/8sgjrGJ2dmHi+unrSorZPgIdN3P+/Hm/32+32x966CGGCjZPHfAukSkZujAmk2n79u1KY6KIQSQUMUagNyZGFMVQKHT27Fl6+pQmPz/fZrOhXyC7OH78OP0Qd+/erfEE6ZQNDQ1Wq7WoqIh01rDpix4Rg2QI4F1atmyZsjkz0WiPJ554AmYsBEF4+umnZdsoyFiwuH5BEMhFQQQHAgFyhK7DPM9DNHpVVRW4eERRrKqqysnJKSgoMDAYS1R4l2TGBGnY09MDF0URg0goYowg6dVJoGZOnjxZXl6ubK7FxcXwUo5kBU6n02q11tbWLl++HJ7gpk2b4rnza2trS0pKHn300UAgALNKkUikvLwcMjqdzswRMdXV1QvjHMx2TCaT6qAL5OTklJeXO53OYDDIxomHI5SUlJAJtvnG5XIpaxStGMhBWu4UFxf39vaGw2GYC5yP0oqi2NfXp2ElMHttbS2KGERCEWMEc98nRhTFQCCgVDP5+fmtra24B2u2AHIkFApBnEReXt7g4KBGSpmbYGRkBJ671WqNJ1YWXsQsoHswWzl//jxRrjIKCwvLy8tPnjwJahVM6vV6H3vssaKiIuUOQ0BeXp5+8ZTi82VjfUkAXRg68YkTJ0gHBbrNZrMl20ElJQ3jKZicnJyqqqrz58+HQiEUMYiEIsYIDNixV6TUDOngiouLR0dHjSsnYjDKzf7Pnz8Pz04jtlcQBFkuMl3f0NCQOSIG0SAcDjc2NipdQiaTSaldaCwWiyiKXq/3yJEjBQUFqlM4xKOkLaFSKT+9Sp92XUUiEXJctneL3+9/44036HLu3LkzKR2TUBQGAoF4viSY0Dp79mwoFCL3jiIGkVDEGIGR306ClnzixImNGzfCSw9OyWQgsFO7yWQ6ePAgfZxM0VutVmUucCjAM6WP8zwP8aH79++ngyjpNKrvzUhaGBoaojfXBu2ycePGEydOxNMuBLrDBTXz9ttvwyAt0zHbt2836lsHSjSqEzkOkz1ut7uxsbGurk4QBFEUQ6HQkSNHoLQ5OTkp7l9Mc+bMGeUEDGiXeKIQRQwioYgxgnn5ijWomSNHjhQVFa1Zswa3MssoiFgpKiqiJWZDQwMcV/2IEplNKSgooHORDxHAxhuqr8LkoNfrnc87Q7SACZiHH36YaJeioqIjR454vV6dUyPKDlcUxUgkMjIyAvMctJphWVbP17iShY5xUVYnv99Pfg2Hw7CebtWqVXQX1Nvbq1HPkyUYDL744ov0tJaqM04JihhEQhFjBPMiYgiiKI6MjMzfOxkyB8h8SV5eXmtrq8/n83g8jY2NZAQiizvoCAZ6luWll16CzU+PHz8Oa1uIHqLHMI/HA597jPfejCwYQ0NDxcXFc9MuBI0OV6ZmINrm4YcfNnxKht65SjsehWXZ3bt3w987d+70+Xw8z/t8vueffx70VuqfHYXvoRJRqHNCC0ARg0goYoxgfkUMkpkMDw/ToY6kI87JyRkeHibJZOKDzgWbn5KM5J1YFEXZGMNQpOFWlzzhcBh2eysoKDh48OActAtBT4cLamZ4eHjv3r2kGpw5c2ZuV1SiETarxO120/V806ZNZLfiqqqqVIoB01pQGBCFfr8/KcNiv4pIKGKMAEXMEuXKlSvl5eV5FOXl5bL5eaX4gE8JlpSUkFxPP/20bKkqHV9Jk2I4JzI3/vqv//qNN94A7ZLiI0iqwwU1c/78+aqqKpZld+7caciUjH4FwzAMz/NXrlyBjTph8R2sPDhy5Egqm9kMDg4WFxfPeUILwH4VkVDEGMEiFDEaX/9BaCDUETbMoNdN0AmUIx8EPEGueDPnMIDRaVDBpAsDjT+3DheqmcbXDJI9m37oAvijpG6N3/zmN6lMaAFffPHFvXv3UiwJku2giEmdRShisFogyHyALQtBjAXbVOqgiEEQRBfYshDEWLBNpQ6KGARBdIEtC0GMBdtU6qCIQRBEF9iyEMRYsE2lDooYBEF0gS0LQYwF21TqoIhBEEQX2LIQxFiwTaUOihgEQXSBLQtBjAXbVOqg
iEEQRBfYshDEWLBNpQ6KGARBdIEtC0GMBdtU6qCIQRBEF9iyEMRYsE2lDooYBEF0gS0LQYwF21TqoIhBEEQX2LIQxFiwTaUOihg54XA4HA4bVRgEWTQY0uHyPJ/6SRBkcYAiJnVQxMwQDoeHhoZ27tzJsuzQ0JDhpVoECILAayIIgvYZeJ73eDw+n0/jg8bBYBCS4WhnFOFwmGXZ7du3O53OVD4lnUqH6/P5Ojs7i4uL161bl7CeLE3C4bB2+9KT3eVyeTweDQvraYNIUgwNDbEs29LSom15VVDEpM5SFzHBYLC3t7eiooJlWZZly8vL/X7//JUtq3G5XCtXrtwUh5UrV/b19cXLGwwGV65c+cgjj4Cdc3Nz6+rqZN0ojLUyPB7P/N/Z4icUClmtVjBpRUVFT0/PHDRish2uIAgej6elpaWwsBAu3dnZGYlEkr3uEqGurm7Dhg3x2ldxcbHGI+vp6WFZ1mQykYbT09MjG1B9Pp+yfaGUMYTh4eGSkhIwaV1d3dDQkM7pfBQxqbNERYzP5+vp6dm0aRMMqwzDFBQUfPTRR6IoLkAJsxSO4xhNHA6HasZgMFhYWAhpcnJycnJy4O+VK1eSflYQBHgQMlDHGIUoil6v12w2P/TQQyzL5ufnFxcXd3Z2+nw+nWfQ2eGGw2G3293S0gJqFZ5jVVUVvh5oU11drdG4SktL44mYM2fOkDbFMIzJZIKGY7PZSJpgMBivfaH33BAikcjJkyeJVVmW3blz5+DgoLZMRBGTOktIxAiC4PP5Dh06VFxcnJ+fT5p0Tk7O/v37Q6HQApcz6+B53mq1Wq3W6urq6urq559/nmGYZcuWETOOjo6qZty5cyekqampCYVCfr+/qqoKjnR2dkIal8tFOla/3x+JROh+Fh0QRhGJRAYGBmjbPvLII4WFhXomw7U7XNohS4+XRUVF58+fx9eDhDidTqvV2tDQAO3LbDZDsyIqUPXpEPWfk5Nz8uTJSCQyMjJSUFAAaoa8ANBPJBQKhUIhug4s7I0uZgKBQENDA+hIsG1ubm5FRUVvb6+qmkERkzqLX8SQOW36vRDIy8sD/xH2sDoRYwkEAnl5edCBDg8Pq2YJh8PE4MSVQPpQs9kMRxwOB0lGrkWOJPR9BINBjuM4jvP5fPSbJUTYQPfh8XggDelNBEFwuVwcx3k8niX1PgreJdLVAuCMeO211+JNhqt2uOCQ3b59O2SXta8jR46g/0g/svb10UcfgYgpKCgIBAKqWTweD1i7oaGBHPzoo4/g4PHjx+GIRhskLU4Dn88HbUcW+gbBOuFwmDQll8tFKk84HFbNtbgRRXF4eLioqIhuC/C28MQTT8jmPlHEpM6iFTHwXlhXV8ey7IoVKxgF6D9KHTLFsn///nhpwuHwL37xC6vVOjAwQB+UiRgy/nm9XpJMj4gJBoONjY25ubm0p9/pdMKvNTU1cGTTpk0kYsBkMnV2drrd7uLiYjqX2+1O1SLZA/EugQyVdbgwGS5TM3SHy/N8T09PRUUFWF52hpycnG3btqH/KBWIA8hkMp0/fz5eMp7njx07ZrVa6aHxzJkz8UQM7cDVI2JGR0c3bdoEU9dAcXExzLnyPA9t6sUXXyRhTyzLFhYWut3uzs5O0uJyc3NXrly5pN4TIpHIiRMnVBsXeHIPHTrk8/l+8IMfpLukWc9iEzHhcNhisWzfvn3FihWqPmAG/UcG4Xa7wZdUVFSU8G2bFovhcNhms8GzOHjwIBykGzm83tGPL95rnCAIxcXFkAbCbqDXyM3NPXPmjBQbZ1BSUkL+NplMMC1XUlJCji/B+ACZd0nZ4dKT4RaLhed5WGREO2RlFBQUoP8odRobG8Ge9BRLPGhr8zwPbWHZsmVEl2u3r3indbvd0EyWL19Oj8cmkwnmOMHn9dBDDzEMs2rVKuL8YlkWOofS0lKSsbGxMWWrZBmBQKCqqor43GWAbee2rAkhLDYR43Q6LRYLNCptlIH6iJJ4dhYEYeXKlQzD5OXlxXMkKXG5XHBaMtoR0SALgmFjB8h4J2xtbYUEVVVVgUAgEomcP38eetLCwkJBEIiIKSgo8Hq9fr/fbreT01ZVVXm9Xq/XCzEEDMNwHAdnTp/J04CexrJu3TqLxdLQ0KAzPaKHeBUbJjnAmPpft9rb29mo0zwvL6+mpob8FAgE4rUvjfOTNt7Z2QmRNCSara6ujogYJhq4HQgEyJFly5YdOXLE7/eTJkkaclpNvtDAjWsPSSzu65ECi03ESJJksVhGRkbeeOMNjUpTVFQ0PDwsIomIZ+ShoSF4wSL+ID3QgS95eXklJSU3btyAn+jJbRnxogGk6PvlsmXLaM+F1WotLS1lGIbneRAxeXl5IyMj8CvP8/ArQ8UH9PX1wRGywCrdhl8gIpGI3W6n17bQ5OTkFBUVHTlyxOv1iqJosVhEUQwEAidPniwvL9fI1dDQEAqF0n1zWUC8il1bWwvGJFOVeqDnHU0mU21tLXlJCAaD8dpXvDkAn88HMzp0G49EIo8++ihpX0SyECVEPFlVVVUk17Zt2xhqgVW6rb5w+P1+YiLVlpKbm3v+/Hl0C6TC4hQxkiSJohiJRIaHh/fu3atagfLz81tbW3ESb26QFzLw2ujkxo0bAwMDAwMDZAgsLi6GfpaN/37PxvHyEDlSUlJCH49EIrC+SYp26/TyVNLzVldXkyxk9Xi8VeKLEp/PB6/ayr61oKDg7bffBu1C0tMxMSKlZsj6eZoVK1bgy+XcCAaDxAWTlH/zN7/5zUcffXTkyJHly5dDdvDgxNu/gLQv1bORRiETUrDAUBRFWsQoc9FNyWq1MgxjNpuXzg6WgiD09PTIlpKQ9lVeXj4wMBAKhTCwN3UWrYghgJo5f/48GXdpSJAaop9wOEx6ybkFkYii2NDQAGeAXbnIEwkEAvASI3MwKU/C8zz09bt37453IfJuSudCESMIQnt7u6yHBVn5xhtvjIyMwCOQ5VLtcIma2bhxo2y508MPP9zY2LjUwoxSZ2hoCAy4d+/euZ0hEAiQVdawRS95KJFIBB4u7WBS1RZk3pT4WGXob0pLTcTwPL9p0yaZcATtcvLkSejiICWKmNRZ/CKGIIpiKBRSqhmckkkW0snSM8YakHWYsoMQUdvQ0MDzPJywra2NTuP3+8ljUj0tnIHuQwFyLRQxSmQTMLR2gREuXkbtDhfGxSNHjhQVFdFqprCwEKdkkgJ8ScuXL9ezzSP5GIisByPx2hzHsXFieMlBVZlCfKyyXwVBgGuhiFGinIAxmUxK7UJAEZM6S0jEEGg1Q2YUcEpGP8Rhr2dNMlmHWVFRITsOEsRqtRIRI+tk4x0H6Fl3+jjZXn1wcBBFDA1MwMCQBjVfj3Yh6OxwRVH0er20mmFZ1maz4ZSMHuhZST1vVn19fbDtuEwp0hKEoaDTDA4OaogYsv+kbAMF+MQBy7L/9m//hiKGhuf5ioqK73znO6BdNm7ceOLECVXtQkARkzpLUcQQiJqBuDOWZXFKRg9JdbI8z8O7fk5ODunCBEHYv38/nKS3t5c+Jz3UxXuDJMCOUvRSUkmSyJk9Hg+KGAJMccNt7t27V792ISTb4dJqBt4TltROPHOD5/lVq1YxDLNt2zY96YnTp7y8nLTHYDAINoe10CMjI8p2RAfKqH56IhgMggYtKCigd5eBMy9fvvzq1asoYgi9vb1gTzoWPmEuFDGps6RFDAHUzNmzZ8vLy9esWYOvjBqQN0WNdUlkeSGkJxuxFBYW9vb2Hj9+vKKiAiZRyCpr0slCRtkceDwR43Q6QSGtWLGip6eH47jW1lY4UlRURC+xJlmWpojp6+tjWba2tnZ4eDhZ7UKYc4cLaubtt99euXIl2X4NUYXEr8QzFN24JCoyjGGYiooKp9N56NAh0nbA4UvP7kDjkrWveG8jxPO+adMmp9PJcRzRweAFRhEjSVI4HH7mmWdKSkr0axcCipjUQRETA/j1DSzM4oN0mrW1tfHSyJRHIBAgm3DTeycwDEP2mKE3QYdk9D81+gWr1QqqhT7z8uXLYdE1ihggGAzCmudUTpJihwvB2vjZZG2IG4jsOi1DKeuHh4eJjqEbTlFREenNZI1LzxuCFL/lPvroo5FIBEUMYc7frkERkzooYpDkIBtOgBtIFWXnCJtwkwWZRUVF+/fvl+lFejkSIWHvIIriwMAAvRkD/cFkcC2tXr2apA+Hw6tXr2ZiPf3k9XdwcDBZgywdsGUtACROJd7XxVWVh9/vp3fGMpvN8DFIkkC2HImQUNqGQqGDBw/Su10fPHgQzhwMBpVNyefzKZvS8ePHoRmihJWBbSp1UMQgSaO6/laZQJlGthOURkaNNNpXlOVSPY/GQZ2XW5pgy1oYtKvinBuXMo3OCq+RS39TwvalCrap1EERgyCILrBlIYixYJtKHRQxCILoAluWgSg3N0KWINimUgdFDIIgusCWZSBoTETCamAEKGIQBNEFtiwDQWMiElYDI0ARgyCILrBlGQgaE5GwGhgBihgEQXSBLctA0JiIhNXACFDEIAiiC2xZBoLGRCSsBkaAIgZBEF1gyzIQNCYiYTUwAhQxCILoAluWgaAxEQmrgRGgiEEQRBfYsgwEjYlIWA2MAEUMgiC6wJZlIGhMRMJqYAQoYhAE0QW2LANBYyISVgMjQBGDIIgusGUZCBoTkbAaGAGKGARBdIEty0DQmIiE1cAIUMQgCKILbFkGgsZEJKwGRoAiBkEQXWDLMhA0JiJhNTACFDEIgugCW5aBoDERCauBEaCIQRBEF9iyDASNiUhYDYwARQyCILrAlmUgaExEwmpgBChiEATRBbYsA0FjIhJWAyNAEYMgiC6wZRkIGhORsBoYAYoYBEF0gS3LQNCYiITVwAhQxCAIogtsWQaCxkQkrAZGgCIGQRBdYMsyEDQmImE1MAIUMQiC6AJbloGgMREJq4ERoIhBEEQX2LIMBI2JSFgNjABFDIIgusCWZSBoTETCamAEKGIQBNEFtiwDQWMiElYDI0ARgyCILrBlGQgaE5GwGhgBihgEQXSBLctA0JiIhNXACFDEIAiiC2xZBoLGRCSsBkaAIgZBEF1gyzIQNCYiYTUwAhQxCILoAluWgaAxEQmrgRGgiEEQRBfYsgwEjYlIWA2MAEUMgiC6wJZlIGhMRMJqYAQoYhAE0QW2LANBYyISVgMjQBGDIIgusGUZCBoTkbAaGAGKGEQXwWCQ53me58PhcLrKIAgClCEYDKarDEsZbFkGgsZEJKwGRrAYRAwMbD6fj+M4juMsFgtHgcOeKmwcfD6fLKXL5VIm83g8es7mcrkgQTAYhCMrV64UBEF2ifb2dvjV6XSqlpbn+bq6OshOcLvdCQtAoK8yNDREn5yUra+vT+epEibgeV4jAc/zyT+x9IMdroGgMZcy5H3M4/FwClwuF/yq7CoRJdknYoLBoMvlcjgcdrsdhgSr1drW1tbW1qYUMU6nE34ym80sy1ZXV9vtdqfT6fF40jijkAkwcWBjBQpYWDUZjNYJz8ayLDRFu90OB1tbW+mSjI6OLlu2jGGYoqIi1Ubrdrtzc3Mhb2lpaWlpKfydm5tLdEy8AhAkSbJarfD3ihUr6KfP87zZbGYYxuFw6DxVwgQ8z2skYFk2G1U1jrsGgsZcUvA8z3FcV1eXzWaDXhEGpq6uLqWIcTgc8CuktNlskMzn86GsUZIdIiYcDrtcrq6uLrPZXF1d7XA4QKtev359ZGRkYGBg3759+/bt27t3KdAKHQAAIABJREFU78svv2yxWF6OAsfb29tPnz7t9XqvXr0KEzZQP+BUHo9nCdYMGE3b2toGBwcHBwdlQywYRCZf/H6/3++XpaTPZrFYlGcjyQRBAK2Qk5ND5nsEQSguLoaDXq9XWU6e500mE8MweXl5x44dgzIcOXIkJycHzgxyhFxLjINEiRiGYRobG+lL0CKGzqV6TnI5jWsREfP+++8PRlE1XRaB466BoDEXPSBc4GXbarXCy/P169f9fv/Fixd//vOfw/DU1NT0MkVTUxMcP3r06ODgoN/vv379usfjcTqdVquVZVm73Q4ehnTfX6aQ0SIGtIvNZjObzV1dXR6PZ2xs7OOPP/7Rj370zDPPsCz77LPPPv/883v27Glubm6JYrFYWmJ55ZVXampqnnrqqZKSEpZlGxoafv7zn4+MjIyNjRFB09XVpfSkLGJgKOU4Dv5Jj9kMw8BMJj3owtgMKenjIHeIJKLPFgqFSDKYePD7/SA+iFPJZrNBgp6eHtVy7ty5ExSMTOJ0dnZCxs7OTokSMRq3TIuYnJwc4lSSiRilleJZT+NaRMTQfY0oipFIRE9RMxMcdw0EjblYCQaDTqezurq6urra6XSOjo5euXLl9OnTTU1Na9asYVn2+9///o4dO/bs2dOiyZ49e3bs2PH973+fZdk1a9Y0NTWdPn36ypUro6OjcH6z2ex0OrNxTtdYMlTE8DzvcDhYlnU4HD6fz+v1Hjt2bPXq1Rs2bNixY0dTU1Nra+vhOFgslng/HT58uKOjA+rH888/v3LlypqamlOnTt24ccPlcpFqsRQ8TTIRI0mSIAhkmA8Ggz6fD/4eHBwkCgagdQz4nmQihjAyMiK7UE9PDxEfbrcbZlnKy8tVJ8PC4TAkrqqqkv0kCEJtbe3BgwdBeuoXMWazGYQUcSotmIih7whFzBIHjbn48Hg88MrtdDr/4z/+w+Px/OhHP2JZdtOmTfCm3d7erjE2adDe3t7c3Lxnz55NmzaxLPvmm29euHDhxo0bTqfTbDbbbLal6U8AMk7EeDweu91uNps5jhsbGzt69Ojq1au/973v7dmzR0O46BcxMpqbm3fs2FFcXFxZWXn69OkbN24Q8bS4pQyMo7KAU3p85ThOdRgGvF4v/ErHkShFDJnOIT8JglBeXg5zIeBIysvL8/v9qoUkUkApL6TofA99O8o7omN3iIjZsmULJAan0pxFjMa16JITV7fSyNkFjrsGgsZcNAiCwHFcdXW11Wr1eDwjIyNvvvkmy7LPP/98U1PTnIVLPDo6Opqamp577jmWZXft2nXp0iW32w1xnxzHLUEpk0EixuPxVFdXWywWj8dz6dKlXbt2FRcX19TUJFsJkhIxhJaWlh07drAs297eDm4ms9m8iKUME5+RkRFJkhwOh4aIIYM0qJN4Ikb1J7/fn5eXB8dzcnIGBgbiFZJchZ4xSvZ2iFwgIsbr9ZaUlDBRp9KcRYzGtUjJVTUiwzCRSET7jjIQHHcNBI25CAD5Yjab29raxsbGTp8+vWbNmk2bNjU1NXV0dMxhGEoKUDOVlZWrV68+derU6Oiow+FYglImI0RMMBi02+0Wi8Xtdn/88cdr1qyprKxsamqa26Odm4gh1WLPnj0bNmzYtWvX9evXYVbG6XQuvjqhMQxDtGxbW5seEQOLopMSMZIk9fb2Ll++nFHzE8muAnIn3tJrPbejFDE8z3u9XuJU8ng88ydiVMlGBSPhuGsoaMxsB/qNtra20dHRo0ePsiy7Y8eOlpaWOY8+c6a1tRXewI8ePTo6OgqzMrJdMBYxaRYxgiCAV4/juMuXL69Zs+bZZ59NsR6kImIITU1NjzzyyL59+27cuAF1YpGF/cJoCvEuhIsXLxJpQkZc1cbg8XjgV5gjiSdiZFqHPg66QXuKhed5mDI5ePCg8len03n8+HHYioaUNt5yISlWxEjUku9169bNTcRoXIvcuN/vl8Xzqp4wK8Bx10DQmNlLOByGt+4rV66cOnUK5IvhbqNk6ejoqKmpYVn21KlT165ds1gsNpttKYT9plPE+Hw+MhFXWVm5bt06Q2SsISLmcHRWpqSk5OjRo1euXIE9ZhbNlAwtQQh0CAuJelFdDEyHAEvxRQzxSckkoE4RQ86s3EIG1maTMBQ9+kAmYgRBIE4l2HtmXgN7aR2TjeurJRx3DQWNmaVAcBvHcf/wD/+watWq5557Lu3yhaa9vf25555btWrVxx9/TIqabpvNL+kRMYIgwKYvV65cOXbsWHFx8ZydR0qMEjEA1InVq1ePjIzApNHimJJRFTEul0s5v8JQO8dIkiQIgjI6VVXEwK61quO9fhFz8OBBhmHy8vJgKTUpQ2dnJ3iaYJJmDiJGkiTiVALme3VSIBAg18rGNyQcdw0EjZl1BINBm81mtVrHxsb27NljNpvT4jz
SQ0tLi9ls3rVr19jYmNVqXdxTMmkQMcFgsLq6uqur6/r1688+++xzzz1nbAyUsSIGaG5u3rBhQ3t7+5UrVyDg10CDpAWiTlQXKJFtXWgdoxqgSp9NecJ42kK/iAmHwwUFBUx0NZPNZjt06BDMwTDUDE28AtCLhpQiRqKcSnMQMRrXirfEmi6njqeUWeC4ayBozOwCImA4jrtw4QLLsnv27DF8lDGcPXv2sCwLUzKLOEpmoUUMVAWXy3X69OmSkhIDJ2AI8yFiDh8+3NHRAVMy169fB22b1a4lRhM9ybxer3KFsyqybWYkSeJ5Hjw4eqY6h4eHQcfIKCoqCgQCegrAUJ8dKC0tpYUFcSoxBgX2MrGfHZCJGHqLnazTMTjuGggaM4uAVT/Xrl3bt2/funXrdG72kQm0traazeY9e/aMjo4ujtdvJQsqYkAPXrt2be/evWazOYuqAqGpqam4uPjjjz+Gap29c3TxBmAIRCXJlEGpgGx9TbyzhUIhpYKRJCkcDjc3N1utVp2+uVAoNDAwUFtbC/tg1tbWnjx5MhQKJSwALSzOnDljtVqVgU1+v99qtVqt1tHRUVUr6bceSU82tVMu0aedSnruPXPAcddA0JhZgSAIdrsdXEhr1qzZsWPHAqydNpyamhry+r2YIjuBhRMxDocj26sCANr22LFjIyMj2atjNL77oydxKmejs8y5zDoLIEsf76JzOz63a9HZ9d97JoDjroGgMTUIh8O8GspvJaZOV1eXPQ6tra3gts7JyTGZTPPhN1gwmpqaTCbTX/3VX73yyis7d+68fv16uh+yYSyQiAEF87vf/W7VqlWvvPJKuh9oqnR0dJjN5n379g0PD2evjkGQpMBx10DQmJIkgTRxuVxETFRXV7MsC6tWlTidTsNFjMfjURVM169f3717989+9rNf/epXRUVF2eg3kNHa2lpQUPDWW29VVVU98sgjLMvCFwmzfWJmIUQMKBi3271q1aqsFrM0ECKza9cu1DHIEgHHXQNZOsaEaRWfz8dxnNPphEkOCIG3Wq1tbW3waQ4QE4FAIOEc5wIAH5JzOBzHjh175JFHFoGCAVpbWwsLC48dO+ZwOBobG91ud1dXF6iZ7N2bft5FDCgYl8vFsuyiUTCEHTt2oI5BlghLZ9xdABafMRNOq8DMBySLRCIZ61QVBMFms4GCMZvNGbUNTOq0t7dDOAQMzYIgRCIRsuVsum0/F+ZXxDidTvAiLUoFA6COQZYIi2/cTSPZa8xwODy3aZV0F1wXRMH09/evWLEie2M3Nejo6Fi7du17773ncDjIMttAINDW1paNO8rMo4jxeDxlZWVXr15dTF4kVTZu3NjR0QFxvtk7KYcg2mTvuJuBZJ0xg8Gg0+m02WwwswLTKj6fL8OnVZIF5icuX768OOJg4tHa2lpUVHT58mWYM4N7F0WR4ziWZeFbLtnCfImYYDDIsuzo6Ojq1asXt4I5HI3zhQm6bN8/BkHikXXjbiaTLcYE7VJdXQ27jPh8vsUhVlThOM5isbhcruLi4kWsYIDW1tbi4mKXy2W1Wulv2wUCAYvFkkUrsedFxITDYbPZPDIysmvXrh07dqT7YS0EHR0dhYWFFy5cgHCwuT4OBMlcsmXczQoy3Jg+nw+2wqqurnY6neAYSneh5hefz0dcB83NzekeUhaC5ubmVatWff7552VlZfSWXZFIBJ5+VnxjZ15EDHhGISoq3Y9p4QBhOzo6WlZWtlg3eEaWMhk+7mYXGWhMQRA8Hg+MXvB2vhS0CwAv3leuXKmpqcmKTwoYxSuvvLJmzRr4nI4sFgICJNL1RPRjvIjhOA6WIxUVFS3KqCgNmpqaVq9efe3aNQyOQRYfGTjuZi+ZY0zQLrDUFrrueBttL2JsNpvT6ezo6Pje976X7mFkodmxY8e+ffsg4Elmlra2tsx/ITdYxEAozNWrV1euXLnAX/hsaWlpaWl55ZVX9kRpampqaWlZYNcmqRCyTzojSLaTOePuIiDtxgyHwy6XC9YWwaZnS1C7APDifeHChbVr1y7ki3dHRwcMW3sompubW1paUlnX/eGHH545c+bixYujo6Ojo6OXL18+c+bMhx9+qFGMtWvXQiyEbJW1x+NJe0VNiMEixmq1Dg4O7tq1awFm5Do6OpqamhobG5955hmWZV9++WWywI/sJ93W1rZ161aWZbdt22az2RZA0HR0dJSWlv7TP/0TBIil9nQQJIPI/O4si0iXMYPBoMvlstlsRLvIvoO21AiHwxAAAMG8oAB6e3vnaYBob29vamp6+eWXV69ezTDMm2++KduJuK2t7c0339ywYQMMajabTY+g6e7uvnz5MozU9+/fv3379s2bN0HETExM3L59e2pqSpKk27dvX758WXl3ra2tK1euhOAYmQ/BYrHIvmKbaRgpYlwul8Vi+fjjj+c7FKa5ubmxsZFhmLfeesvlctG7EciKBAcjkYjX63U6ndu3b3/qqad0Vos509LSsnr16rGxMbPZnC0B3giSEBQxBrLAxlRdZLSQBcg0wIn21ltv/fSnP3W5XL/73e9gsJiamrp9+/b9+/ch2e3bt69du3bmzJkUBwV45d69ezfDMF1dXcRnpxy2yMFQKARuvtLS0m3btr3++uuqs0RnzpyZmJiQJOnmzZsXL17UkF/d3d3nzp2bmJgAlXPx4kX61z179uzduxdUFF0el8uV4V4Fw0SMIAhms3lsbGzVqlXzN+HR1NRUXl7+wgsvzM1xK4qi3+93OBwMwzQ2Ns6flNmxY8fRo0e7urropWvIkkUQBMO/+ZIQl8sFu6MaFZ6FIsZAFsaYPp8PtAssMkqjdgkGg7BFnrKKLvCbXjgcdjgcP/nJT37/+9+LogiTFj/+8Y9/+tOfyrpxGPWvXbs2NTV1//79iYmJOczQdHR02Gy2tWvXvvXWW3Ob94pEIqC31q5da7PZiJTp7e0FvTU6OppUwbq7uy9evDg1NTU1NUX0GfgQXC5XWVkZPfUiCEJZWVkm74BnmIgBBXf06NF5WlPd0tLy1FNPVVVVjYyMpN4OQ6GQw+HYsGFDXV3dfDhBOzo6vvvd7169epVlWYzwRcLh8MKLGIfDAdu9m81mQ6LzUMQYyLwaM0MWSJOQYSgJ2SKPAB5/lmVtNhvHcfPdVcK7hN1u/+///u/p6WlJklpbW91u97PPPptwTfWHH3547do1mMPQrxhAvrS1tfn9/hQfAbyBt7W1gZS5fPny/fv3r1271t3dPedx6uLFiyDO4CTNzc3PPPPM8PBwdXU1fWmn05nJ+4YYI2LArfj5559/97vfNVwTdHR0vPjii48//rjL5TK2KYZCoa6urrVr177++uvGlvnw4cMQWfz+++9n8uNHFjcwL+33+y0WS1dXV4qvvChiDMRwYyoXGaVxgTTIBViqTUKGVQsD7n5QXSzL2u32+XjpJ+X54osvQL5I0ajVjz/++Nlnn9XZq3d3d4OUuXz5snbK9vb2mpqaqqqq1OULjSiKv/vd765du3b37l1DAne6u7tv374dCoUg8vfZZ5/9+OOPLRYL/doTDodZljXqFgzHGBHjcDgcDse+ffsMj+dtbW3dtm1bV1dXwlm4YDDI87zH4wGNT+bSE96g3+9//PHH6+vrjS05zM7duHFDGSqFIAtMJBKBF+JUdq9CEWMgRhmTXmTU1taWCQukXS4XfJogWRUViURAajgcDgN9TMFg0Gazvffee/fu3aOPWywWt9u9atWqZBfSnjlzZmpq6ubNm/FmQZqbm9euXet0OhPePv3VTC76zSk9Mu7Xv/71+vXr9+/fb8RgdRiU2YcfftjS0rJq1Sq32y2rnwyTWCqkCwNEDPjMrl69avg0TGtr6/r167n4n9Ykn/OAL5CVlpY2NzfDFHpDQ8OTTz4Jx2EPAA1BEwqFXn311e3btxtb/qampqampgyfi0OWDl6v12w2z3lKBkWMgaRozGAwyHEcfMmILDJKe6wuyAWLxZLK9APZLtYQH6jL5WJZ9tKlS7LjMA1z+vTpuW0M093dffPmzVAopNQxNpvt8ccf93q98YoE007wiW+WZZ955pn9+/fDsFVbW8tGsdvtLpdL4wXY6/U+/vjjNpvNiMFqxrX04Ycffu973zt9+rRsMmaRixjwvre3txs7DfP6668zDDMyMqJ6UY/HA9oFXj5A8oOHVRTFcDgMeUVRDAQCLpcLZlmrq6s5jlPtwSORSFtb27Zt24zVMaWlpRgZg2QOqUzJoIgxkLkZk+f5jF1k5PF4zGYzx3GGFMnv98M9pnISh8NhsVj+9Kc/KX+yWq1ut/uxxx5LZT+ziYkJmY6pq6vbuHFjIBBQXpG4tOC+wMsWiUTKysrAaPDJZBCjfr/f6XRarVZ4CY+n5wKBwMaNG+vq6owYrA5DnM0777zz2GOPud1uq9VKLrTIRUxZWdnY2Jix0zCvv/56PDHL8zy0YY7jWlpa6Jk3nucZhuF5Huqu/FYZBtS32WxW3cFFFEWHw2GsjtmzZ8+PfvSj999/X2M+CUEWGJiSSXbSHkWMgSRlzAwJ1NUAFIzG9MMciEQiVqt1zp/UhYU2qnl5ni8rK7tw4YL+aJh40Dqmrq7u1VdfVY18IBFCn3zyiWzFMsdxUE6LxSIbJkRRZBgG8o6Ojv7lL39RtdKrr75qlI6B23n22WcvXLhAL1NazCLG4/FYrdZTp04ZuCipubmZYRi/36+8HAR/tbW1hUIhSZJAstAJjh492tLSwrKsUrrCYxgdHd2xYwds9KRav43VMR0dHQzDjI2NlZWVJTQ1giwYMCVTXV2tfycrFDEGktCYGRWoqw0oGNXphxQB15Ldbk82o8/n0ygS7Im6a9eupqam1Dv527dvT0xMxFMwgiDYbLYNGzacOHFCFEV405YlKCsr6+rqUpVckPhf/uVf7t27B/u4qFrJQB0TCoX+9V//ddeuXeBjoYuRmaQqYsAd+8wzzxj1kYH29va1a9cqvUjgbS0rK7t06VJZWZnNZgsGg0oRA46k3bt3q9wqw4B/1OFwwHoNOInqTb344ouG3M7hw4d37NjxySefWK3WrPgiKLKkgBhMp9Op52UXRYyBxDOm7GsAmRCoqw3P8/OkYABBEKxWa1J+JfiaY7xQBEEQWJb9/PPPi4qKDOnhu7u779+/f/jwYXi1pgHjwEb2MPTcuHFDKQg4jlu2bNmZM2eUpYXN8cLh8B/+8AeYW7Lb7crghFAotHHjRkOW2fb29kqS9Prrr3/++ecsy0LPsGhFDNSG0dHR0tLS1G0H1NTUKDeIg6rgcDhA54ZCIavVajab44kY2plHisowDMuypGbDm6jqnI0gCEZViMOHDzc3N1dWVrpcLgzvRTKQUCjU1tamZ0oGRYyByIypGqibrrLpR1suGAUEjuj/iov2WgrDvQft7e19fX3ffvut7ELwzkzWKPn9/rKyMti0V5bS7XY/9NBDShEDL+offPDBN998A0fI2Kd8/fb7/evXrzdkB9fR0dE//OEPp06dghXy0iIWMR6P5+jRo8eOHTMqpLe+vv7VV1+VXcXn84GGpQ9C/ArDMMePH6ePOxyOlpYWmbgJh8M2m03VRQXRwUod4/f7165da9SWvkVFRfBZioTWRpCFRxRFPVMyKGIMBIxJdtTNwEBdPcB3fxbgQoFAgGVZnVvIaH/uB+a3nnrqKaN2lld98YYYJpm8C4VCIGJks/IWi6WtrU3mToJXd4ZhZFUiFApVV1c/+eSTSms4nc6amprU7wjmllpaWmBNjLSIRQy8MTz22GOGDPatra0Mw8imJYPB4JNPPrl//3710jPM+vXr7XY7PHvYk4fn+ffff58ETwWDQZjQUz4Gn8/HMMzZs2dZllX6epxOZ1VVVer3dfjw4ZqaGlC16FFCMhaYkonnY5VQxKQGHwU2BYEVBhkbqKuHBf7E8eDgoJ6P+Ph8Pu1SsSx79epVo7wHNputqqpKJv1hDuaf//mflVf3+/3PP/88zNDAEViUBBvGkpAXEvkAGoIGKg/sxC3zKwmCUFVVZcii62vXrsEXsGGbu8UpYsCXdPny5YqKitRNdvjw4ZqamsHBQdklrFZrZ2en0m00U3qGuXz5MnQHwWAQ9lmXok4l2PsOqkIkElE+hra2tvfff1+SpPfff1+1QrzwwguGOJVaWloqKyvpOCkEyUBgSoZlWdX4QRQxqsjUCTRzu91ut9vJFlYQnAt7gTgcDpatZpiZ/9Jd/LkD+8Es2OVg/U5CpydMtMT71efzWa3WkydPGjJj8f+3d/fRTdV5/sDvPWfOzp5Vd3XmMCPqjoOtHBi0KNAwKyPFARwsQloP2OWhUHtSLGJdKaTdmcpuVoi/ovgwDczosDJkYK1zbBxkpti4oC2JkiI2bQFJClRJqPiQWB+mKTA7ye+Pz/a713s/SW97b3LvTT/vvyBt83Bzc7+vfL5PtbW1t956q+gghMNhnue3bNmCbgAcDAatVqvH44HRLcJJSS0tLVCMgfkrLS0tiUSis7NTdBCgZw2mbklVp1an0o4dOy5evLh9+3b47p2diFH3bKiqqlq4cKHoIRwOh8ViicVi8OFHnj3HJQSjW6AMAz9qaGiYP38+z/MMRqK3AUaJR6NR2Ju+qKhIOpfP6/X+5Cc/Uf7qbDZbTk5OW1sbNQMU/ScUCsHUVlFJZqydvbAIuHAdcKfTWTMUVCei5cKDwWBckkQiwXFFL76468UXdxkXMV6vN/ObGw/7oPDVOsWiXE6n0+VyqTUTZdWqVaLvpZcvXy4qKmpqagJtSL8MuIa2iQ6FQmaz+eabb546dSprd+6999758+fn5+cnm6zO5mPDikGTJ09Ge7JUWYD+008/hcVBnE5ndiLG6XQ6nc7Vq1ercjYsXbpU9H7DN8KamhqXy9Xa2ooWY4RHFjqMYOmLWCxWWlrKcdwf/vAH9JfD4fD999+/aNEik8nE87zZbN65cyd6zi1cuFCVaXhz5871er3ApmGPOYWibeLxuMvlEpVksgYx0WgUhMH2VUZ1AnsWWq1Wu93O9ixkOoFFyUQ6kRmOK9q1a9euXQZGjNls1qRzPPWOyjBMM8WfWyyWrq4ujuOUX9Lr6upuvfVW0fX88uXLy5YtgxPG4XBMnz5d9MWYISaRSEQikRtuuAGmzSYSiXA4PHny5HHjxvX09LDfP3/+PPs3jJIxm81Mzy+//LLwqzskGo3eeuutylcJ6ezsfOONN7q6utDBGPrJ6BFjtVqhyqT8YNXW1go1mkgkYrGYyWRqampyOp2wzSnMLaqpqXE6nbDBhHDCPfQfQTlu+fLlP/vZz8xm8+OPPy5ac9Dr9cJ4K7jDTZs2eTweNoMRrtqik9Lr9S5dulThC7TZbCUlJc8995zValVlLW0KJQMRlWT0gJggFnQT7xpJ4IPP8zzs7ANhv+/3+5XrRGaMjphwOKzVyZB65hG8lcl+CnNUg8Gg8jXubDZbRUWFaMBKMBiMRqOBQAD6EKCVufnmm+GruN/vhzloDDFQVnnppZd4nq+urp4xY4bdbr/33nuFL+GNN96AkxlO3XHjxu3cubOjo4PtMrFlyxbRptOJRMJutysfGdPY2Hj27Flo5bMTMRzHHT169Pbbb1d+NkiLcjB2Cf4N1xGYXg+jXtjFCG5xuVybNm2Cwb8HDx4cN27ctdde6/P5QDa//vWvYaMKjuNg+mJLS0tNTQ1sUCB6UWazWfRM4LxX3sVYVVVVXl6e+jNGoegtUJKBRa5H1JxDxVsUVvkYFhzCiogwrO9GGOgjEIWhhIXtpZxWoMiJ0REDtStNHjq1n1J/SwwGgxaL5fe//70qQyAWLlwoqkVZrdYzZ87Av+HsamhomDx58s6dO+GrODO00+k8dOhQXl4eNAf19fUcxxUUFITDYa/XO3Xq1P3799vt9jfffPPVV1+FVqmjo+Pee+8VDRtNDH2BF71qv9+vfCDErl27vvjii71792ZnJQaGUnu93rlz5yo/G37yk59Ie9+lg7NgzhGcHAMDAy0tLbAQEPQccRw3ffp02GkCxtNNnz6d47hrrrkGhnqxuWps2K/0xcJAYFEBsKGh4eGHH1b4Gmtra2FmXeY7kimU1BkWHBxXxPNFPF/M88VSbQiHrwoj1Yaw8pEaHGhFJFm0Pn4jjtERA2V4rR4d5vKgP7JYLClG/sJiXbW1taWlpQqv59
XV1bfffrvwzqFZ+fLLL4U3spExcKJGIpFt27ZBN+XMmTOhe2Hq1Kk/+MEPHnnkkdmzZ99www233HILfN92OBxfffVVTU0NnOEwGgFdAaGhoUE6ien2229XPoc8kUjU1tbCaiby3hwNMkrEwBDr3bt3K18hRno2sCG3ogcV4YN1J8HaMMuWLeM47jvf+Q4nyMSJE6EYA6sGwR+ySUyihMNhq9V69913S1W7YMEChS/TZrNxHAf9i8MecwolWdh4jmErHMJxHgrBIRyIinboyNSGEcGRjhgdMcla08wkBaFSt7VwMq9cuVL5OM7FU99EAAAgAElEQVSKigpRzR72a0QfVLgADHQnwfJ9W7du/ad/+qcrr7zyiiuuEDZbt99+e25urs/n+8tf/sK2XDCbzTCXVpRgMLhs2TLpQAiHw6G8RymRSKxcudLlcmUhYmBTj9raWuWDXqVng8PhKC4uRterEC4AAx1MO3bsgH4ljuNuu+02u93e1dUVj8fb29s3bdo0bty4v/mbv/mHf/gH+J2Kior6+nqe5/ft2yf6EMJeGxaLZceOHaJzEXqUlA/9ueeee4KSjTMomQ/qgNRh81Pkh82zlZ+ioiJUGMIIx3MMW+FQCxxGb3T1FkMfTyjDa/gEoPdQens4HE79xGBhM1Uu5kuXLhV91zWbzWVlZW+88cZf//pX4e2iaUpOp3P58uUVFRVXXXUVtEqFhYW7du2Cvs6Wlpb77ruP47grrriC5/menh64MmzatAn24BO9IracDOyuJfyR3+9XPpozMTSWVM/N1igRA5dIVaYmFRcXi86G/Pz8/fv3w+LKInGfP38eVumFL5Qcx82cOfPv/u7vvvOd73R2doq+58Xj8YGBgcWLF3Mc94tf/ILjOJfLtWjRohtvvBHag6KiIhhG/vjjj8OpEB/aoEtEnA0bNih/pWyC0sjeIn2ETTeVH7ZshvzY7fZ0NPwyHZAiwvkpMiOcZyszsOjZ6JLWd9/Qja4OY+jjGQwGte0Th8+X9PZhn5jVaoXLu8Iruc1mE7URUOlvb29/+eWXu7q6REURp9P5ox/96JlnnoGL1fe///3vfve7MP5BujFWPB7v7u7+wQ9+8K1vfevzzz+vqalxuVwmk4k1W/C1v7GxEcYCw6LALpcL/e6t8GUmhnZZ1nOzpQgxs2fPVt7rtnjx4qCgFxPOhmg0Go/HYc0f+ELpGhqhDf2FLpcLxsRwHHfddddJd95iicfjYFu4W47jPB5PPB4PBAJut3vnzp1sshKsPgRz4kV4cjgcyjvOSkpK4FRL0bxlpuFnI6Plh003lR+2bIb8sHlnmWn4dUIE/cfQja4OY+jjqQfEoMOK3W536idmNpvb2truuusuhVfy6urqqVOnip4SGCIWi7311lsmk8nn8/n9fphTwvP8FVdcsXz5crfbvX379ry8PI7jSktLU1xYBgYGxo0b9/bbbzudTjBEJBIZGBgIBALQFP7whz+ERs1sNtfU1Gzbtk3qjKlTpyppoHfs2HHp0qW77rqrra0tCxFjHZpfrfBssNlsoqPDFo0GuCxfvhwa0bKyMqfT2dHRAcrp7u6GCts111wjXDARhiiKIByJROD9nj9//t13381uDwaD+fn5FoslFAqFQiGPx+NyuaxWa2VlpUj6Lpdr7dq1Cl9pSUkJDFOHRaM1bPjRaRrU8FOSxdCNrg5j6OOpW8QEg8HUIw6hqDBv3jyFV/KqqqoNGzYI7xmu27FY7LPPPuvu7r7jjjug2YJ+3lAo1NTUBOOR77rrrm9961s33nijcINP6OAWlf8PHjz46quvvvHGG/Pnz3/66afZ7bBNgd1uB9O43W6n07l+/XrpbBWFHQiNjY19fX3z5s3LzkqMunU54T03NjY+8sgjcAZYLBan0/n6669Pnz7dYrGwITL19fVTp06FQbvCs5aNa4Gh3cK7ffzxxzmOGzdu3OTJk6HKAr2JcCoIfzMejwMmhDcGg0Hl+yixpWJcQ4PVqeGnGCKGbnR1GEMfTz0gxpVkoYrUbS0087NmzVJ4JS8tLRU1EI899tjPf/5zGMUCQ3ZeeuklmDwLNInFYlOnTr355pvz8vKuvPLKl156if0tLF0G68qIRlY899xzPT09HMctW7YsHA6LdiQQJh6PSzsQnE6nkg4En8/X2dk5a9YsQkyqVFdX/+xnPxPeM9RChIv5JBIJ2CfCZDJ5vd5wOHz77bdDGU00P95kMnV0dMTjcRj7LWQpdBDOmDHD6XTyPL906VL0VBA+B+EtqiCmsrJy7dq1gJhhDzuFop8YutHVYQx9PDUf2JsCMak3V1ILMTAwQHjPVqu1qalJtIlSKBTKz8+HGSowGvL666+/6aabhHNvYTAyNHaBQMBkMgnv4b//+78TiURtba3FYpk2bdp9992Xn58v2iNZ+NqlHQhKENPX17dv375Zs2Zl4d5J0WgUzhXliKmqqlq7dq3wzp1O59atW6VPIx6Pgz+gfPLzn/8ceoiCghnXwkWQRCPYATG33HJLOBxetGjRFVdcAbsyoS8ZRcw///M/q/Jikw2tp1B0G0M3ujqM0Y+ntk2aNfkUa5h/lOwPYW6H8pXupIi59dZbu7u7pY8IX79hTO5LL72Um5t77bXXCo+eqGtMtM5NOBw+f/7866+/7vf7J0yYwHHczp07UxwWFRGzY8eORCLx1FNPwYs1NmJOnjw5ODjI/utyuXiehzpHOhDjSr7VMyy5k5uba7Va165dy3FcXl4ee8th0C7rcrJarcIpZ7DY3Q9/+MMf/ehHVqu1p6cHSjso21HEKJ+uBi8Wek+HPewUin5i9EZXbzH68Uy9ply6Yzabk22flGy4DITjOLfbXVhYqPBKLkVMsgoQ7F584403chzX2NiYm5t7zTXXCEHg9XrZ12moyggHdDocju3bt/f09PA839TUJNz7WvpY6iKmtbW1t7fXZrMVFxcbHjEswWAQpqiEQiG1upNg1yThowAgvF6v8L2MxWI1NTWwt2coFJo7dy7HcatXr77hhhuE7t69ezes6FxRUSEqtEDfE8dx06ZNg14qtve1dGngNHUnlZeXU3cSxYgxeqOrtwytgFxk0OOpYTk5dWcWzNVIVmJPa3fS/v37E4mE8At/OBwuKioym80wa4Tn+UmTJn3ve9/jvrmUK2xP5nQ6ofESvlKe52fOnDk4OMhuh+3MTCaTlHHqIubrr79ubGy02WzZMCYmkUjEYjE4xGz/lPQN7HW5XJWVlTAHuKioyOFw/Nd//Rds6Mj6AtevX28ymaC8Nm/ePOGfwww0r9crHCR74MABWMn3yJEjsFsC+1FLSwvP8zabrbu72+Vy2e32oqKipUuXiqpBfr9flYG9MDuJEEMxVggx6sboY/nZHNLMx+12S5fYF8ZutycrxqiFmPLyctFzsFqtgUDg7bffhnVcnE7nyy+/PG3aNIvFAhNHYGDv5MmTx48f/93vflfYKxSPx2EtTdGQms2bN0PZ5uzZsz09Pcw97Ot3U1MTLNUNq2ZMmTJFujLI6DZY8Pl8fX198O8sQQys0y9ci4UtfajwbLBJVg2Cj0c8Hg+FQm63e82aNVdeeSWsCwRbIMGc9UAgUFVVxXHc97///dT7QgeDwWuuueYf//Ef4W1wuVxmsxlmYoNa5s6dC0Ntli1b5nA43G73smXLpKRdt26dwldaUlKye/duQgzFcCHEUERJPYQ2rY+betsmKGCgmysBYu655x6FV/KqqqpHH31UeM979+6Ff8C3aFgbBmafOBwOr9frdDrNZvPAwMCMGTO+/e1v33DDDan3bWhqauJ5ng2guXjx4htvvAEDhJ1Op9VqnThxIjRb69evdzqdBw8elE6xfvTRR0cxxfqpp566dOkSlGFsRlhofvhnhp4TMD588eLFytexXblyZRBb7A4eheO43bt3RyIRj8fjcDjMZjO8tXa7fdOmTQsXLuQ47nvf+97p06fRJw8jeDiOW7JkCYzqWr9+PazoDFO4QS2wpREr0kjnqsE2kwpfKRQhpWPIKRSdhxBDEUXa556BeL1eORWgpqYm9LlZLJa2trYZM2YovJLX1dWJGvVoNAor58IsaFhSFRZxsdvtM2bM4Hn+zjvvdDgcy5cvnz9/Psdxd955J+qYWCxmt9t/8IMfXHvttc8++yzHcU6n83e/+100Gv3xj38Mq427XK6Ojo7W1lZY5ywcDqMTiDiOq62tHemr6+3tPXXqFPvvjBkzDL/YHUweE90IiCkvL1eOmJKSEtGoFLPZDBuR8zwPZwZLIBDgOO6ll16CufUwzOXqq6/+27/9W+FyQIlEoq+vr6qqiuf573znO1DL4TjOarU6nU673X733XeLarls9tPWrVs5ybYDCxcuVP5K2Vw1QgzFWCHEUESBLYEyXIwxm82p6+4QeG7Sgo2KoyCmTJki/GL/P//zPz/+8Y+PHz9eUVGRn58v6hhyuVx33303gAaKK1ddddUVV1xx/fXXv/HGG8LfPHr06OLFiydPngwNFnwDB7UEAoEPPvhA1GyxxUfq6upEC/1Fo9EpU6aM9HW1trZ+/fXXTz31FLuFM/q2A8nGSfn9fqvVumXLFuX1CWn/osPhWLZsmXAQDAssawv/drlcVVVVzc3NHMex2trMmTPnz5+fk5PDD+0KyXHcq6++GgqFOI6Dt1+0I5cwHo+noqJCpPjRnQ3S3HXXXbBppYYD+ymUUcToA1Ep6YhLsl9PWuN2u+U/XEdHh3TrPai7T548eRT1CVFWrlwp/e79q1/9ymKxiPbAgeaG2ctqtb7wwgubNm0aP3781VdfDV+z77rrrnvuuQeasKuuuurqq6/Ozc3t6OiAteah2Tpz5kw0Gr148aLolcLX7zlz5oiej9vtXrly5YheVGNjYyKR2LVrF7ultrZ28uTJMLdX5pHPfIZ5ZlarVVQLgcCijXv37lU+5762tpbnedGdcxwn3Q4JbmcCcDqdq1evdrlc8+bNA95yHDd+/HgY/s1x3KJFi+bPn/+v//qvgDDR7HwUZ6ITDuL1ekd6NqDRP2kpFDRGH4hKSVPMZrN0dmc6EovFkq2IkSzgGOEgX+hAUGXfYul3byCd9AMCQwjYfy0Wi91u37lzJ2uzvv3tb19//fV///d/D70K5eXlN998M1vSV9he/PrXv758+bL0lQrHYLDY7fby8nL5r2jXrl2XLl1qaWkR3lhVVQWNrJ6brWGeWbL1AGDtOL/fX1BQoPBssNlsCxYskG5rLq2UVFZWLl++nA3GZqW2HTt2cBzX2tp65MgRmJG/e/fujo4O6BiColxFRQU8YbYINFqMcbvdUtxs2LBB+aje6upqIK22K3ZTKBSKWgmFQjzPJ1u1RcXA1s0j/atIJAITmKGA0dnZCR0Iynfzra2tfeKJJ4RkgYXKRM1lLBbLy8t75plnHA5HRUUFtFmw1JnVap0yZUo4HN6+fTvHcRMmTGhvb/d4PBaLZfz48VCVqampES3oumbNGqmTHA7Hli1bRI/L87z8gtO+ffukgrHZbCUlJVu2bLHb7QZGTIqnnp+ff/z48ZycHIVng81mq6ioEKnW7XbDHCIYjM32r7711luhg9Dj8bzwwgtWqxXe0YaGhqqqKovFMnXq1OLi4vz8/HA4DCcKLOcMloQzA6bAPf3007fffrvIK1I8walZV1en8DVWVlauWbOGluulUCjZFI/HYzKZ0NlAasXhcIy63wp6W0wmU19f31//+tcXXnhBlfXuWltbL168eObMGeFjQYsTi8XcbrdQLWaz2W63w7iW9evXNzU1sb1xtm3blp+fv3r1atgfEFbBaWpqikQiHR0dTqeTNVs1NTVQ7HnllVeEDxoOh3meF3Wceb3esrIyma/F5/OhgrHZbIWFhVBJMipiUi8rBLOsJ02apLx/sa6uTjQBCiolMJcM1LJ69eq6ujphQVs4PL61tZXjuKVLl8J+5TAoWORi6FwE0FitVviFmTNnwhS4aDSK9jG5XC75Z0OKlJSU7N2712KxpJ4fSKFQKMYKNNip5wwruXO22sqoA11Lhw8fHhwcjEQiSkZB7Nixo7e3F0a/PvDAA8JHgdECR48eBbU0NjbeeuutBw8eFNZOhEtsQDO0c+dOWFLEYrHcfPPNU6dOFR5JjuMGBgYANBaLBUxTV1fX19d3+fLlS5cuWa1W6YytBx54QE5f0o4dO/r6+iKRiHAcjDB33HEHjOM0KmJS71YK2CwvL6+srBz1CcFSVlYmqhbCEofBYDAej8PJIZ3mDU+P7ekofLbwfjscDnZCCN8GwFBDQ0Nubq7NZjOZTLfddhvP86IyCaxQpLwD1WazFRQUgLTS9FGnUCgUrQKOUb1fCZbVUOVuI5GI3W7fvHnzl19+GYvF3nnnHeEcHDl56qmnTp06lUgkOjs74W9nz54t6j9qaGiA9WASktEwEJghBWvQT58+fcqUKazRGRgYgHlJwsEVomZrYGBg9erVS5YssVqt27dvv3jxYk9Pj2gGTDAYnD17durXsmPHDngtPp8vxXGAMRhWq9WoiAGmJPtpOBw2m8179+5VXpqzDQ3vFTXwDQ0NRUVFsP1EQ0OD6AnAoi+wHYHH44GB3HBKQR9QS0sLbCIK+pG+DWxkzMDAQGlpqbRiqcpuYbahdQUOHDiQycH8FAqFkrFAr41aleZoNAq7xyiswYgCmys9/fTToVDo0qVLnZ2dbFW3ZHnqqaf27dt36tSpS5cunTp1aseOHexH69at27Bhg/D+Y7EYLHCHzhFJJBJWq7Wtra2oqAjmMTU1NbHyv9frzc/Pf+mll3ieZy2vtNliE1zC4fC999574sQJ0S9s2LChoqIi2WtpaWnp6+uTvhZpKisri4uLYQiEURGTYsdzSH5+/tGjRydMmDCKdl2aFStWiEbGxGIxi8VSW1srLcMkEonf/OY3ubm5wpnYDQ0NUIxhfagwsAuGtaNvA3QhPfPMM7AfuvBH0WhUrTJMZWXlkiVLHA5His3JKBQKxdCBXhuHw6FwiIzb7YaJRarPhoPv3n/4wx8WLly4a9euzs7Or7/+OpFI9PX1+Xw+n8/XOBSfz9fZ2dnX15dIJCKRSGtrq7TJr6urmz17tmh+Fgx23rRpE7ouH/QHORwOth0Bm2LCRmR2dHTA12+YQCO9E6vVun79etjKUPSjwcHBEydOvPPOO62trfBCWlpafD7fqVOnYMJvb29vS0uLnCpUYWHh3r17oRJmVMQ4nc7UA8Jh2v2cOXNUaenr6uomT54sgjxs7Pn444+LHtrtdvM8v3z5cqE8oADT3t7O8zwj8MDAgMPhgBEw0pcQi8Vgn/SOjg7RjzZs2LBq1Srlr8tmsxUWFjY3N2u1UDeFQqFkJnC9NZlMLpdrFF3nfr8fqhSi9eJUjPS7944dO/bt28fUAuns7PT5fPv27Uvd3ldVVU2bNk2ENo/HA6V34Y1sMV82fZr9cn5+/qFDh4SDDdhGj2izBd/Jp06dKnrcaDRqs9ncbjeoBV5Ib2+vz+cD04yo2ZowYcLRo0dhXKxREZNiEwqI3++3WCzPP/+8Kj1KNputsrJSekKEQqH8/HzGKViVmef5srIyaaGooaGhsLBQSuCWlhbREBkInFUHDx4U/b7b7V64cKHySUm2ob6k48eP6/k8oFAoFLUSCASsVitUZeSMaIlGo263u6KioqioSLR9r+qBinhxcbEqozltNpvFYhF1KiWGNj9iRZpwOFxRUQHTfKRfZc1m88yZM0VDJmCGCsdxokoPjK+YMmWKdDHYDRs2WCwWVV5UZWXlnDlzWCFDz43XMM+soaEhdTFG3R4lW5ITAhxTUVFx5swZtq4zupNiX18fx3Gw8qD4pXKccIgMDK2C8TSi34RJa9XV1aq8ovLy8vLycthEM/XRplAolOwIzLhxOp1FRUUmkwnmGPv9/qAgMEIFpiLb7Xa/35+B1RSDwaDZbG5ubp47d64qV/i6urqFCxdKGyOYm+JwOHw+HxyBgYEBFDG//e1vOY47f/689Nmy7if4+h0Oh4uKivLz86WCUfGLt81mmzt3rrD3wMCIGbYYA6pdsmTJiBYHTJG6uroFCxZI5RSJRKxW64wZM9avXw9dSChiXC5XXl4eygVYBRhqdN3d3SaTyWKxSE+FWCxWXl6ebGDUKFJQUABr6MnZ9YNCoVCyKfF4PBKJeL1emE8qD
AwahSmomXxKZrO5vb1dlQXAINXV1dLFWhKJRCAQMJvNS5cuFQ7UlSLGarXm5eWhI1A5jgsEAvn5+bBODGhPupy93+9X8Ys39B60t7ezPg0DIyYxXDEGxqy0traqpVrb0H4N0ncUli3iOK6mpgamf0tnRMNKQeiJAm/D+fPnH374YeHQKtE9lJeXr1ixQsXXMnHixEOHDsnZfJVCoVCyOPFvRqun4XK57Hb7xo0ble/9x7Ju3bpp06ZJ+84GBgZgPRgY7yxtm2CAS3NzM7oTDjRb7e3ty5Yt43m+paVF+nLC4fC0adOULyvPUlpaunHjRofDwVpYYyMGlrxLMUTLYrEcOnRo4sSJyle9Y6murs7Ly0Pn8oRCITgnKisrW1tbhT9iq9WxaUrfeKkcByN8zWYzOmpMdcHYbLbCwsL6+nqLxUIL9VIoFIoeAj0MBw4cyMvLU/FqD46R1mPi8bjH4zGbzTzP19fXnz59WvhTtoCIdL14mJ0EC9Y7HA5pASaRSASDQXUFY7PZ8vLyDhw4IOyEMTZiEomEUGTSeL1es9ms4vBeSHV1NdqvlEgkYOFdEAmsx+x2u4PB4ObNm+F5AniPHj0aDAZhA3SYnWS32z0eD/oNIBwOT58+XV3BsKJcagVSKBQKJZNpaGhwuVxz5sxRayAEZN26dcK5scIAZSwWC8/zMOTZ6/V2d3fffffdUJuBlhRGC7GhQjCpBeUL/AnP8+oKpry8fM6cOS6XSzjQ2PCIGbYYw7oYVSzG2IbGx5SXlyd76IGBAY/HA6s68t8M23ICVoBuaWlJdh4kEgm/3z9t2jQVx8FAiouLN2/ejI7doVAoFIpWgYEQbrd7ypQp6l72q6urb7nllmRLgsEIoZaWFrvdzrYxljZbFovF4XAk+8oNcTqdeXl5ao2DYZkyZQoM4hR2jRkeMYlEAo54TU2N0+mEsocQFrA58549e1QcGcOyYsWK6dOnp15hBXpYQ6FQQJBQKDRsz2ssFoOxwGpNt2OBNfqoDEOhUFKkt7d3cHBQ62cxFgNfL3/605+qW4yBi//8+fPLy8tTTy+H5inwzUQikWGbrWg0WlNTs2DBAnWrBjabrby8/Kc//alwX0JINiAmkUhEIhGYFAfr4fI8X1RUBEOmYb3krq6uSZMmqbLwnSjr1q275ZZb7Ha7unuler3ee++9t7i4WHXM2my2wsLCp556ymq1woAYCoUCqaEM5dFHHy0qKmpqatL6iYzFWCyW8ePHl5WVXXfddWpNUxIG+oNco1r0L1ngWzfP86tWrVL9OdfV1V133XVlZWXjx4+3WCzCY5UliBGGVT78fr/L5bLb7Waz2WQyvfzyywUFBeoeWXZ8V61axcZ4K3zZXq938eLFBQUFqhdgIFVVVRMnTuzq6oIlpSkUCkuQMpTHH3/8V7/6ldlsPnbsmNbPZSxm/fr1W7duXbZsWUlJSToagtra2uLi4unTp7sUUwb4Mn369DR967bZbCUlJcuWLdu6davFYhEdqPQtoKw8qvEqHo9DyWH27NmqV+dYamtr77///ry8vI0bN3q93pGeFtFo1Ol03nvvvXfeeae6g6FEKSgo2Lt3b1FRETojjkKhjLX09/cfPnxY2HP01ltvPfTQQ2fPnt21a9e2bds0fG5jNjBN6ejRozk5Oap3zbBUVVUtWrQIvoGPYoPMYDDocDimTp26aNGidHR0QGpra3Nyctra2nieTzF+VIdRs0YUDAbz8/Pb29snTJiQvhPCZrPV1dWtW7duwYIFPM9v3LhROkZHmHA47Pf7wS633HLLihUr0nceQEpKSoqLi10uF+1ZTaFQent79+zZU1RUtGfPHnbj4ODgQw899Oabb4ZCodOnT5eWlvb29mr4JMdsmpqarFbr9u3b09SHwFJbW/vwww/feeedt912m91u93q9weQDPYPBoNfrdTgc06ZNu/POOysqKtLapNpstoKCgu3bt1ut1qampkwef+VRuaPL6XTCCTFr1qy0HnFIXV1deXl5WVkZLATE8/xtt9320FDglh/96EdLly5dtWpVuu0Cqa6uhtndPM/L2TSEQqFka44dO2az2crKytxu9+effy780e9//3ubzXbu3LkPP/zw3Llzr7766kMPPaTV8xzjMZvN+/fvnzNnjopr36VIbW1tRUVFSUkJm1S7YMECaLPgmzlMqi0pKamoqEhTz5EopaWlc+bM2b9/vxEXZVUZMbFYDE6I4uLiNPUypk5tbW3VUNIxVmvYmEymPXv2WCwWw3mWQqGokv7+frfb/cADD/z7v//7sWPHpDNN+vv7zWZzd3f3B4JYrdY//vGPmjzhMR5Y1x9WCckMGkSprq6GNkurR8/Jyenu7oZNCbV+N0Yc9Yccwwlx9OhRrU4IDQN0czqd1JFEoYzBCHuOUnQPPfnkk7/5zW/OfjOHDx9euXIlTbfWJND7/6c//WnKlCmafPvVKnV1deyLd7K1bXSetMybghOipaXlxhtvHDsnRHl5+cSJE9va2vLz8401MIpCoShMip4jUXp7e1euXHny5MnT38yZM2d++ctfptiojpLWwPpydXV16VjtTLcpLCw0+hfvdE3+tlqtDoejvr7eZDKNBcfAUJiuri6TydTR0ZGmo0qhUHSVwcFBt9u9fv36ZD1H0lRWVr722ms9WDo6OlauXHnhwoUMPHOKKJFIJD8//9ChQ1qNhch8SkpK5syZ4/P5DP3FO12IGRgYMJvNbre7pKRE3T2VdJjq6uoJEya89dZbYPk0HVIKhaKfXLhwAXqOnn/+efkTixobGzds2MDW3hAGbty9e/e//du/pfWZU5IlEAiYTKajR49OnDgxfQuF6CTQddDe3m70L95pXIYvFAqZTCafz7dkyZIsdgwI5uWXX4aFjGmHAQolu3Ps2LFt27Y98MADr776auqeI1EGBwdXrlx56NChU6dOnTp16v1vBm4MBAKVlZUHDhxI3/OnpIjH4zGZTD09PdntGBBMT0+P2Ww26FAYlvSuJdzR0QEnRLY6BgTz3HPPgWAGBgbSejwpFIpWYT1Hjz766LFjx+HakNwAACAASURBVEbxdeW555575plngCwnT548efLkiaHAf+FHBw4cqKyspBG+WgUu5lnsGCaY7Og6SPuGCAy22ecYEgyFMhYi6jmSM/BFmt7e3hUrVvh8PgaX49+MEDSPPfbY7373O9VfCEVmstgxWSaYRAYQk/imY+bOnZsd43zZOBgSDIWSrRl1z5E0jz322K5du8Au3d3d3d3dXd8M3Aia8fl8ZrO5v79frRdCGWmy0jHZJ5hEZhCTGHLMoUOH1q5dmwXzlcrLy0kwlNSJxWIpdsPIzKOru+v72Mng4ODhw4eV9ByJ8qc//WnNmjXAFyBLZ2dnZ2enfyjwX6aZ48eP79ix44knnlDl5VBGF7i8d3d3T5o0KQu6EQoLCydNmtTd3Z1NgklkDDGJIce43e76+vq8vDzjroNXUlIyceLEI0eOWCwWEkz6wicJuoOa8BeS/Sj1w/n9/mS/uWnTJrj90KFDwtvD4TDcLhwZF4vFnE7nTTfdxPP8zJkzeZ6/4447fD6fnJeW7HkGg8FkvyzdfsXr9Up/TdQMCx+LvYr7779fdFePPPIIz/N5eXnDPudhD69R0t/fv2fPngceeGDbtm2j7jkSZXBwcMWKFW63GwQDdukYynvvvQf/YJoBx7z33nsrVqygDZW0jdPpNJlM3d3dS5YsmTVrlkG/fsPiN0uWLOnu7jaZTEYfyStK5hCTGJqv5HA4Xn311dzcXMPNxYdTobi4uL293Ww2OxwOVa5xFDRckqBNpvAXkv0o9cPxPM9+U9TkWywWuP2mm24S1jaCwaDJZOI4jn2tiUajs2fPFt4V5Hvf+97mzZuHfWnJnmcwGExxNISqg4OD/ppwJy/hY7FXMW7cuMbGRvSFD/uc0adtrJw8eRJ6jvbs2aOw50iU559//he/+AUTDMDlvffeO/bNwI0dHR3MMa+88sqDDz6o4jOhjCIejwe+wNTX10+YMCEze/CpmOrqaliG+NChQzzPezwerY+oysn0pWdgYAAKGN3d3cXFxQUFBenenFOtVFZWTpgwAU4FKCll+NCNtaRuMoWYCIfDwh+JihNyWtloNCq8B9Gby9pyjuMqKirY7VLElJWVcRx37bXXmkym7du3NzU1rV69ety4cRzHXX311aweM1INpEAMx3Gs0ILyRfhr7KAJH4u9Ck5inbGAGGHP0eHDh1Xv/oNtkt555x2hYI4dO/buu+++++67R4cC/wXKCB2zfv162oVN87Cv32+99dbEiROLi4u1bo7kpqSkJDc3909/+pPD4TCZTKFQSOtjqX40uPTE43Go0fl8vu3bt0+YMCEze4eOOlCAmTx58pEjR+BUMOIuWYYLNI1WqzUuCGsyXS4X+02HwwE3ms1mTkAK4f2kbmVdLhf8Tn5+PtyP8KdCxIwfP37//v1wuwgxhw4duvrqqzmOq6mpYZ2M8Xj8tddeg9vvuOMO4VOKJ4n06THEBAIB9Gj4/X6Rw9BfYxWsZIjhOO6+++6TvnB4IdI7TP20Vczg4GBvGsJ6jk6ePJmml/DYY4/953/+p1QwR48ebW9vb29v9/l88A+gjMgxbrd7xYoVNN1a8wi/fpeUlJhMJp2XZKqqqkwmU0lJSXt7e3aPfNDs+xMsIeN0Oru6umbPnl1QUKDPc6K0tBQKMJ2dnRaLxWq1ZuupoLcwxAhvbGpqEiEmFouxCgRoRjQERA5i2D20tLTAP4TlHGjL8/LywCKsU0mEmIcffhj+Vjqctri4eMKECevXrxc+JfmHgiFGVGTq6OiA291uN3OYx+MRtccDAwPsIMCRSYEYYaeSEDHCyDmk6gb6elSP6j1H0qe9YsWKY8eOwTgYJhiwy5EjR44cOfLOO+/AP0AzzDEwPqa7u/vpp59+9tln0/ckKTITj8ddLheU4Zubm3NzcwsLC3U4Sqaurq6wsDA3N7e5udntdptMJpfLlcUjH7QsAkciEbvdDrOW9u7dO3HixMLCQv30LpWXl+fl5S1ZsqSrqwtKR263O4tPBb0Fmkmz2ewainDAB4OC1+tl/mCNvbA/aNgW1+/3wy80NDTEYjHmIfYL0JabTKYpU6bAT6FTSYSYCRMmcBw3b9486UOIyhVwJ/KHx6KIEeotGAxardYUL3P37t3wUxhAgyJm6dKl0PPFOpX0gxiD5sEHH3zllVeEZRihYN555523hwKU8fl8UI9hxZju7u4jR46sWLGCNlTSSQKBgNlstlqt3d3dW7ZsycnJKSkp0Qll6urqSkpKcnJytmzZcvr0aavVajabs77fQPvLUEdHB5wTnZ2d27Zt4zhOc8pUVVUVFBTMnj27paUF6G21Wo27P5ZBw1pK1sBzgrBfYw2tsMYg1MCwLa7dbhfCiN0DK+cwxHg8nhtuuIEb6lQSIQb+UM5msFzyoL/PECMSD/urWCyWGjGsTgMVLBQxDoejpqYGbodOJUKMkuzdu7euru748eNdXV2sDAO9SCAYr9fr9Xo9Hg/8AxwD/UrHjh2D+UpdXV3Hjx9/8cUXH3vsMa1fEOV/w0oyDoejvb197dq1N954o7aUqaurg2/da9asaW9vdzgcPM87nc6x0G+gi8tQPB6HqpfVavX5fPX19RMnTpw1a1ZlZWWGz4PS0tK8vLzZs2c3Nzd7PB7QFQxE0PogjbmkaOk5joNSgXAgiKhdZ0WL1C1uNBplfyW6ByYhhphgMPjaa6+NHz+e47ibbrrJ6/VmGDFoYLBe6ntgiIEalfCXhYiJxWK5ubncUKcSIWbU6e/vX7FiRVtbG0xKAsTAUBifzwc1GI/H4/F4Dh8+DI6BeoywGAOI6e7uPnHixIMPPtjc3Kz1y6L8XwYGBsAKQJk1a9bk5OQUFhZmePWQ2tra4uLinJyc8vJy6DSApzR2vnXr6DI0MDDAyh5Hjhxpbm6eM2dOXl5ecXFxuk+LysrKwsJCOA+OHDnidrvNZrPFYiG+aBhoJpMN7AVhpJiPgw5ilSb1jB74HSFiEoL6RF5enhAx8+bN45J0J4XD4d/85jder1dYLpI5qjeREjHsUsVuQRe4czqd8FN4CcIXKKondXR0sE6luXPnoocu9SGlJIa2STpx4kR3dzcbEMP6kqAM4/F42traWltb29rawDFSxECP0okTJ5qbmx988EEa4au3RCIRRpnTp08///zzkyZNKigoKC8vT2t/ApReCgoKJk6cWF9f393dDZNOxhRfILq7DA0MDHi9XrPZbDab3W53V1dXfX39pEmTVNcMnARgl+Li4ueff56dB1R90UOgmRQN7I3H4/Ln/Qq7h5K1uKnvAUaQiBATiURg+Mv48ePz8vI4GQN7n332WZ7nr7nmGqEh5B+KZLOThKcoe87SgTXC0TMpBvayYUCsUynZoSPEpA5sk9TZ2SlFDKvEAGIOHz7c1tYGxZjUlZj333//scce27Nnj9YvjoIkEonAuEmr1Xrw4EGPx7Nx40a4aJSWlqqomdra2tLS0oKCAo7jHn300ebm5iNHjtjt9rFWfRFGp5eheDzu9/vhvbHb7R6PJxAIbN++fc6cOTzPFxQUlJSUlJeXj2hCU11dXVVVVUlJSWFh4ezZszmOKy8vb25uPn36tNvttlgsMFsqEokQX/QQFDHCmgQb0tvU1CRs19mcHen4D1HYvTU0NAjvIRKJwO12uz0hQUwikWCdShA2xfraa6/lOI7NQoLAGlMcx+Xm5gpfmvxDkWx2kjCBQIA9n2Tjf9mDpkYM61QixIwuGzZsaGxsfP/99wExojExMKr37bffZo5h3UnCMTFSxLz77ru0oZKew76BQ0Wkp6fH4/HYbLZJkybl5OTMnTu3pKSksrJyRF/Fa2trKysrS0pK5s6dm5OTM2nSpI0bN3o8np6eHmATfNsfC2NfkkXvl6FIJALC4HnearW6XC6fz9fR0bF3797a2trFixfzPD9jxoxZs2bNmjULzhKW4uJiuL2goCAnJ4fjuNWrV2/ZsgUKPB6Px+FwmM1mcJLf7ye76CqspUw2mpUNZZVWPtgfprgf+O4CP5JuZcD+JBqNShGT+ObiMaz5X7RoEcdx48aNu+mmm7Zu3epwOBYvXnzNNddwHDd+/PjXXntNdOcyJyjJQYz0lYrmc3Ecx650qRGTEHQqEWJGmn379lVWVgYCAUAMDOyF2UlsfjWbmuQdCivDsFnWbKkY2BLy/fffDwQCL7zwwtatW7V+iZRUicfjoVDI6XQWFRWZTCa73d7S0tLe3u7xeHbv3r1mzRpY1Hv27NnQPBUWFgqbrcLCQrh93rx5PM9Pnjy5vLx8+/btHo+nvb29paUFpvQWFRU5nc5QKETNljEuQ/F4fGBgwO/3O51OBhqHw+FyuTo6OlpbW7u6ugKBgMfjcX0zgUAgEAhAPzT81Gq1CklE3Ua6DZcywlV6pX/LlpNh06fRsAZeeg8ejwd+5HK52DoxQkOwTiVh8x8KhdiNQkBcffXVqmw7kBoxwjFDwlcHES7WKXysYDAo7BRjEXYqJXtrUjyZsZnBwcGVK1e+9dZbgJiTJ0/Cpo/CKdbCCUrCsDKMaEDM8ePHT548eerUqUAgcOLEiZUrV9KGSoYI1HS9Xi98W4bOJqfTCe2O2+2G5gkWeWIR3t7Z2dnS0uJ0OmGyNJDI6/VSd4EwxrsMAWiCwSC891ar1Wq1Cr/Iwi0gFQicPXa73eVyeb3eYDCYgTVGKQqTopmPx+MMMR0dHdK/ZbOWWJdTiiRb1h1+6nK54EvV8uXLRSWfgwcPFhUVFRUVHThwgN0YiUR27969YMEC+HOTybRmzRrRk0z9fFK8HOGeAGji8biwX4lFVG0WPlY4HF6+fLnoVSQSiVgs9vDDDxcVFYl6xxKEmOR58cUX6+vre3p6gsHgqVOnTp48KexRYsUYcIzP54OuJfiHcNFeNr+a9SWdOnUqGAyePn16//79a9eu1fqFUkYWAE0wGHS5XA6HQ9RC5efnQ7MFPQMQWFsVvqv7/X4quiSL4S9DonGO4BuInHkfFN0GnbwjfCtTv63spynuR+Y9pHis1Lcne4hRPJ8RncPD3qfMIynzzymQCxcumM3mzs7O06dPB4NBYY+ScHgvcwzbeQD4IhKMsAwDfUmAmLNnz27cuPGPf/yj1i+XMvqI
Pp7gm2AwCFKRc3WisBgeMRQKhaKH2Gy2vXv3nj179syZMz09PYFAgBVj2MgYqMcI94BkYbsmgWCEo2GgDNPT03PmzJmzZ896PJ6VK1fSdGsKJUGIoVAoFOV5++23165dGwwGe3t7z5w5IyzGCDuVhI6BgF2AL0LBQEeSqAxz5syZ3t7eDz/8cPv27b/61a+0ftEUivYhxFAoFIqiDA4OPvTQQ2+++eaHH374wQcfsGIMjIwROgb6lYAyoBlmFyFfoAYjFAwrw3zwwQcffvjhiRMnSktLaUMlCoUQQ6FQKIryyiuv/Md//EcoFDp37tyHH37Y29t79uzZ06dPSx0D42O6urqgKiMM3CgSDOtIgtEwUIY5d+5cOBxubGx8/PHHtX7pFIrGIcRQKBTK6NPf3w/jecPhcCgUgmIM61SSOoZRRhrgCyoY6Ej64IMPzp07FwqFzp8/39fXt27dusOHD2t9ACgULUOIoVAolNHn2Wef3b1790cffXT+/HmhY6BTiTkGxvkCZZhmRIEfAV9YLxIIhnUkhUKhcDh8/vz5jz766PDhw+vWraMRvpSxHEIMhUKhjDK9vb2rVq06d+7chQsX+vr6zp8/zzqVkjkGKMM0wwI3Al+SCQY6kqAMc+HChY8//njz5s1/+MMftD4MFIpmIcRQKBTKKPPwww83Nzd/8sknH3/88UcffSR1DBsfwygj1IwwzC4ivkAvEgiGdSR99NFHH3/88SeffHL27FnaUIkylkOIoVAolNHk0KFDP//5zz/77LNPP/30k08+uXDhQgrHQEkGKMM0Iwr8CH4ttWAuXLjwySeffPrpp5FIZO/evb/85S+1PhgUijYhxFAoFMqIMzg4uGrVqs7Ozmg0KscxjDJMMww0DC5gFxFfhONgRIL57LPPotHohQsXVq1aRRsqUcZmCDEUCoUy4uzatWvnzp39/f2ff/55JBJBHQPjfBllWFUGcuabYbcDX4QFmGSCiUQin3/+eX9/f1tbW1VVldaHhELRIIQYCoVCGVl6e3tXr14dCoW++OKL/v7+aDSa2jGMMkLNSMPswviSWjDRaLS/v/+LL7746quv6urqXn/9da0PDIWS6RBiKBQKZWSpr69/7bXXvvrqqy+//BJ1zMcff5yMMkwzaOAXUL7ASF6pYL788suvv/765MmTq1evpunWlLEWQgyFQqGMIMeOHXvkkUcGBgb+/Oc/y3QMowzTjNA0TC1CuwBf5Ajmq6+++vOf/zwwMPDb3/7W6XRqfXgolIyGEEOhUChyMzg4WFZW5vf7Y7EY6hjhOF8hZVhVBhLGIrKLlC8wkhfGwYgEE4vFPv7449WrV9MIX8qYCiGGQqFQ5Mbtdj/55JOXLl0aHBxEHfP555+LSjKMMkLNJAuzC+OLqACTTDCDg4OXLl1qbm5+8skntT5IFErmQoihUCgUWYFtkj777LPLly9fvHhxWMdIKcM0IzQNUwuzC6u+CPkyrGAuX778l7/85V/+5V+OHTum9aGiUDIUQgyFQqHIyvPPP19WVvbkULZu3Vo/lP83lCeeeOKJJ56wD2WLIJtHEuEfsnuDO2ePxR5969at7Fk9+uijZWVlWh8qCiVDIcRQKBSKrPT396NTo3UYrQ8VhZKhcIlEoohCoVAoFArFUPlfxEBvrjRfYOmX5HMsUSwRST7D8qkkn2D5GMsFST7Cgg6pOy8JOoMghOUcFukiEB9gQb9InZXkDJbTWHqwoHu1BCSR7kvHNt0V5SSWE1iOY+nG0oWlE4tfdjqS5D0sx5Lk3SQ5mjztyeMbLkdGmHfUy0gfetjXkuI4pDh6yQ54sjcIfTeTvfXyTx703EPPUvR8Rs989DOCfprQzx36CZV+kNlektK9mURBryHo1UZ6UYL1hUVBr3IpFsURBr26ppjJJUyKgdKiSJsJtDVB2x1p84S2YtLGjg1sEgZtPaWNLAyEEgVttb+S5Gssf8YyIEkMyyCWi5JcwnJZkr9g+R8sf5UkHo//L2K+/vpr6StHZSOTNahsZLIGlY30vJEvG+n5Kl820s+JfNnIZA0qG5mskS8bJaxRKJuMsSaZbOQLJhlidCsYFe2iUDOaOybZGzoixOiNLEq8Ip8sSryCkkWmV1CyyPSKfLKg13+ZZEHbHZlkQdu7UXsFJQvaao/aKyhZZHoFJYvUKyhZZHoFyCLK/3Un6QoxMmszKGJk1mZQxMiszaCIUVKbUR0xqtdmUMQYpTajSRlm1ILRg11GrRnVHZP5YozeECPfMUoQgzpGCWJQx8hEDOoYQowSxKCOIcRo38GUNYjRVQeT6mUYfSImrWWYtAomw3wZKWW0dYzyYkyyCp8Sx2RT55FWiFHSeaRzxKCOkYkYJZ1HMhGDOkZdxKCOUQcx6CHTD2Jk9iWhiJHZl4QiRmZfEooYmWUYFDFK+pJQxGSmLwlFTBaUYTIvGA35IowRHWOUYozqiEEdowQxqGNkIgZ1TAYQgzpGJmJQxxBi9IOYYcbEEGKyBjGq9yWhiKEyTArEaMKXt4eLJpRJK2JG5Bi9IUa+Y5QgBnWMEsSgjpGJGNQxMhGDOkY/iEEdIxMxqGPURYySYbwyEaNkGG9GEYO+ATIRg77x+kGMzL4kFDEy+5JQxMjsS8oMYvTWl5Ss4K8QMdkhmGHVoqJpdOsYHRZjMtOjpAQxqGOyGDGoY2QiBnWMfhCDOiZr5iIlRQx6IPSDGPQ0kokY9PTNYsTI7EtCEZOZviQUMQYqw4xUMCkQoxZfFNpFiWa0dYyhizGqIwZ1jBLEoI6RiRjUMTIRgzpGJmJQx+gHMahjCDHGQIzMviStECOzLwlFjMy+JBQxMvuSUMTILMNoiBij9CVpUoZRRTCq82UUlBmdY1KYL5PFGEP0KClBDOoYQoz8HiX9IAZ1jLqIUTJByRiIQQ+rfhAjsy+JECO/LwlFjN76kvRchkmTYNJql1FoRl3HKC/GJHujM+MY1RGDOkYrxKCOkYkY1DEyEYM6Rj+IQR1DiFF3lrUxEIOeHPpBjMy+JBQxMvuSUMTI7EtCESOzDKMhYoxehhmpYFIjRm+C0Y9jDF2MUR0xqGNkIgZ1TBYjBnUMIUZdxCiZoESIGRli0FNcP4iRWYbJDGKU9CWhiDF0X1IGyjA65It8yowCMckck6ZijCF6lJQgBnWMTMSgjpGJGNQxMhGDOkY/iEEdoy5iUMeoixgls6z1gxjUMWlBDPomqYsY9FRTFzEy+5JQxMjsS1IdMTL7klDEyCzDyEeMIfqSMl+GyZhgvLKjImXGYDFGdcSgjiHEoIhBHTOmEIM6Rl3EKJllrSVi0INFiNEPYmSWYTKDGCV9SShijF6GUVcw6YCLQs3ozTGGKMao3qMkEzGoY2QiBnWMTMSgjtEPYlDHqIsY1DGEGJljew2AGPQtVxcx6ImrH8SgH/sMIEZmXxKKGCV9SShiDN2XNKIyTPoEo9Auo9NMBhyTsWIMIUZviEEdIxMxqGPURQzqGHURgzqGEKM+YtBDry5i0BNIXcSgHwOZiEE/ftmBGCV9SShilPQloYjJjjKMEsGozpcRUWYUjjF6MUYJYlDHKEEM6hiZiEEdIxMxqGMIMYZDDOoYQgwhRn3EoBcRmYiR2ZekOmKU9CWhiDFKGSZjgkkrX+RTJt2O0Rti5DtGJmJQxyhBDOoY/SAGdYxMxKCOURcxqGMMhxjUMZogBnUMIQZHDHo66gcx6IdZP4iR2ZeEIkZJXxKKGA37ktJUhjGuYDLpmIwVYzKDGNV7lDKAGNQxMhGDOoYQI234UMcYDjGoY7IZMegbaTjEoB8qdREjsy8JRYzMviRdIUZJXxKKmOwow+hKMHIok63FGF0hBnUMIUY/iEEdQ4gZW4hBTwtCjH4QI7MvKTOIMUpfkoqCkQ8Oz0iiH8foDTHyHSMTMahjMoAY1DEyEYM6Rl3EoI5RFzGoYwyHGNQx2YoY1DGKEIMeUMMhBj251UUM+hFVFzEy+5JQxKAXuAwgRmZfEooYvfUlKS/DpEkwI7LL6DSjlmO0LcZkDWJQx4wpxKCOURcxqGOyFTGoYwgxxkMM+lEZU4iR2ZeEIkZmGQZFjJK+JBQxBirDKBGMQr6MiDIjdYxRijFKEIM6RiZiUMdkADGoY9RFDOoYQoy0iUQdQ4jJWsSgJ5nhEIN+4NVFjMy+pKxBjFH6kkZahskYX+RTJn3FGPTYoo7JTI+SEsSgjpGJGNQx+kEM6hh1EYM6hhCTBYhBHaMjxKBvT7YiBv3gqYsY9PKhH8TI7EtCESOzLwlFjCH6klQpw2giGNUdo20xRgliUMfoHDGoYwgx0uYAdUy2IgZ1jLqIQR1DiNH1cr3ZgRj0IpjFiNFhGUaHgsmMYzTsUVKCGNQx2YEY1DGGQwzqGE0QgzpGXcSgjiHEEGIMhhj0YpQdiJHZlzSmECNfIYeTRzllNC/GqN6jlAHEoI6RiRjUMYZDDOoYwyEGdQwhRi+IQQ+TuohB32xNEIN+ANRFDPoxNhxi0EuqTMSgl/IMIEZmXxKKGEMLJoVdRqcZAxVjlCAGdYxMxKCOGVOIQR1DiCHEqIgYqWP0jhj01MlWxKAXhTGFGJl9SShiZJZhUMTosAyTohNHRb6MiDIjcozeepR0jhjUMeoiBnWM4RCDOiZbEYM6RhPEoI4hxBgMMejHyXCIQS9t6iJGZl9SdiNGkzLMqPkikzKaF2OUIAZ1jEzEoI6RiRjUMeoiBnWMuohBHZOtiEEdQ4ghxBBijIQY9EKpLmJk9iWhiJHZl4QiRmZfEooYzcsw6RaMuo7JTDGGEJMdiEEdQ4ghxKQXMehB1wQx6ImYrYhBLzGEmKxHTGYEMzrHyC/GZKZHSSZiUMfIRAzqGHURgzqGEEOIURExqGM0QQzqGEKMBohBP5zZihj0sqsuYmT2JaGIkdmXhCJGSV8Sipj0lWHk06Stra2trU2hYzJWjCHEZAAxqGOyFTGoYzRBDOoYQgwhhhAzjGAIMShiZJZh5CMmk2UYmXBJFhUdk5keJZmIQR0zphCDOkYTxKCOIcSkGzGoYwgxhBhCDCFGR31JSvgikzLpKMboHDGoYwgxekYM6hhNEIM6hhBjeMSgb6EmiEFP6zGOGPTyZzjEoE2RuohR0peEIiZ9ZRj5fFHXMUqKMTIRgzpGP4hBHZOtiEEdQ4ghxBBixgRi0I/6GEcM2iRkB2IyWYYZhWBSOyZrEIM6RhPEoI6RiRjUMYQYQgwhRnvEoCeEJohBPySaIAa9cBBiRo0YtGHTOWIyI5j0OUYmYlDHyEQM6hh1EYM6hhBDiCHEDIsY1DGEGEJMphGDXkxlIga9iOsZMWgzKRMxMvuSUMQoLMMoFEwKx6hejCHE6BkxqGM0QQzqGE0QgzqGEEOIIcQQYkaMGLSBMRxi0tGXlIImrd+MURCDOiZbEYM6hhBDiJHjGEIMIYYQQ4gZMWJk9iWpjpgRCaY1eRQ6JjsQgzqGEEOIIcQMixjUMYQYQgwhhhCjGmJSCCaFY5QUY2QiBnWMuohBHaMJYlDHEGIIMYQYQgwhRneIQS/NmiAGba4MhxiFfUmEGEIMIYYQQ4ghxOgdMehliBCjE8SgTbi6iBmdYEbkGJmIQR1DiCHEEGIIMYQY3SEG/cgRYoyFGLTx0wQxMvuSCDGEGEIMIYYQQ4ghxBBiCDGEGEIMIYYQQ4ghxBBiCDGEGEIMIYYQQ4ghxBgIMahjCDGEmNEhBnUMIYYQQ4ghxBBiCDGEGEIMjhjUMYZDDOoYQgwhhhBDiCHEEGIMgBjUMYQYnSAGdUwGECPHMTIFIx8x6OsixBBi/slxaAAABkdJREFUCDGEGEIMIcYAiEEdowliUMcYDjGoY+QjJrVjkv1JBhCDHiV1EYO+14QYQgwhhhBDiCHEEGKSOiYDiFHFMcl+WT5iZPYlEWLQ858QQ4ghxBBiCDGEGELM8IgRambY31FShlEdMegxVxcx6JlDiCHEEGKGRYxUMIQYQgwhZnjEoI4xHGJQxyhEjBzHjEIwChGDvnZCjBzBaIUY9AqjCWLQq64miEFbIk0Qg7bOhBhCDCFmGMSgjpGJGNQxekYM6hiZiEEdIxMxGSjGqFWGQREjswxjRMSg5yEhhhBDiCHEDOMYTRCDOkYTxKCOIcSMGjGoY7IJMUock44yjHzEoEdSJmLQd5AQQ4ghxOgBMVLBEGKyATGoY8Y4YlDH6AcxqGNkIgZ1jELEpHDMSCmT4n7kl2HkI0ZmGUZ1xKDngyaIQT8jMhGDfjYJMYQYQkwaEYM6RhPEoI4Z44hBHWM4xKCO0Tli0leMGZFjUt9JZsow8hEjsy9JK8SgZ3W2Iga9XhFiCDGEGEKMOohBHUOIQXsZRo0Y1DEZQ8ywjkmhGTl/mI4yjHzEyCzDqI4Y9OwixIwaMejVT13EoNdwTRCDtmuaIEYqGEIMIUYWYlDHZCtiUMeoixjUMTpHTDp6lBQ6ZhQZkWAUIkZJXxKKGPRdHlOIQT/pYxwxaItAiCHE6AIxqGMIMWMcMahjZCIGdYzqiNGtY5I9UMbKMJlBjMy+JBQx6LmqLmLQT5y6iEGvG4SYdCMGbSU1QYxUMFohRiqYTCAGdQwhJt2IQR1jOMSgjtE5YlDH6AEx6jpmpILRFjEy+5IIMTpHDHotJcQQYggxqiEGdUy2IgZ1jH4QgzpGJmJQxyhBjH4co5wyqe98RIJRiBglZRgUMTL7klRHDHrmGw4x6FUoWxGDti+EGEIMIWZ4xKCOURcxqGPURQzqGJ0jBnWMtojJvGNGJxhtyzCZQQx6BuoHMejnlxCTBYhB21xCjCzEoI7RBDGoYwgxhkMM6hi09j5qxKCOUYIY1DHpQMxIizHDOmZEmpFzVyMVjLaIkdmXhCJGZhlGdcSgnyN1EYNeDQyHGPTKTIhJN2KkgiHE4I7RBDGoY9RFDOoYdRGDOkZdxKCO0TliUMcoQYxOijEyHZMCNPL/1liC0RAx6Pk86jKMERGDXtOyFTFoa0WISTdi4pJkM2JQxxBiDIcY1DFKEIM6RlvEZMAxo4tagtEhYmT2JaGIkVmGUR0x6KdSXcSg1xZ1EYNeIQkxhBhCjAaIQR2jLmJQx6iLGNQxMhGDOiYDiEEdowQxqGMUIkaVYoyGjhmFYEZUhskYYmSWYQgxWYMY9DqvCWLQtk9dxEibb60QIxWMIRGDOoYQowliUMfoBzGoY5QgBnWMEsTopBiT2jHpoEzqh8uCMox8xMjsS1IdMTL7klDEoJ9xdRGDXqnURQx6vVUXMWirka2IkQqGEKMZYlDHGA4xqGP0gxjUMTIRgzpGJmJQxyhBDOoYbRGTDseoRZlhH0UtwegQMTLLMPIRg57z+kEMesUgxGiCGLQlzVbESAWTIcSgjslWxKCO0Q9iUMfoHDFKepRUR0w6epT04BgllJFz5ykEk74yjN76klDEyCzDoIiR2ZeEIkZmX5JWiEGve4ZDDNoGEWIIMbR9kjaIQR2jc8SgjskMYpQXY1TsVJLpmBGBRv69pX5iRi/DyEdMBvqSdIUY9PqjH8SgV29CzKgRIxUMIYYQkz2IQR2jFWLkOyZjiMlAMWakjlErGRCMDhGjpC9JdcTI7EtCEYNeB/SDGPQqqi5i0LbAcIhB2+VsRYxUMFoiBnWMuohBHaMuYlDHqIsY1DEyEYM6JgOIQR0jEzGoY1RHjG6LMUZxjN4Eo7e+JBQxMvuSsgYx6NVsTCEGbdEIMYSYLEEM6hj9IAZ1jFaIQR1jFMSoVYwZ1jGZocywzyHF8x8RYpIdTL31JaGIkVmGkY8YmX1JKGJk9iWhiEGvKvpBDHpNVhcxaMuiLmLQ9tFwiJEKxqiIQR2jLmJQx6iLGNQx+kEM6hiZiEEdIxMxqGNkIkbDHqWMISbdxRg5jkkfZeQ8tFqCSVMZJh2IUdKXhCJGZhkmaxCDXhsJMeoiRioYrRAjc361CoihUCgUCoVCMVz+Px1K54sKOxL8AAAAAElFTkSuQmCC
so with the same CM, the extended body has a larger distance in front of the axle compared to a shorter wheel base where the distance in front of the axle may be very short, but the true ce
nter of mass did not change much if at all using tungsten. The longer wheelbase gives you better stability and a less aggressive steer can be used and give you more speed.. You might be able to move the true COM back 1/8"
or so with the extended wheelbase.
 
dazed
dazed

aint it easier to just find the balance point and measure back to the rear axles?

while i understand what you are talking about( i think/hope ) we all know the more weight on the back the better, yes too much is a bad thing, but the center of mass really has no bearing, or does it? it doesnt change, it is simply the point in the middle of the car with no regaurd to weight. while the center of gravity is what most are worried about. it changes with everything you do to the car. add paint, it changes , add wheels, it changes guess what i am wondering is why bother with the COM ?
no i am not being a smart alec, i honestly dont know.
 
hmmm
Center of Mass and Center of Gravity are the same in physics. It is what you need to calculate how fast your car will be going as it goes down the slope of the track. The math requires one to use distance from the center of the car, not distance to the axle and I agree we all say distance to axle because it is easier but then when you try to compare cars with different axle placements, you are out of luck until you figure out where the COM is in relation to the center of your car.
 
txchemist said:
... I agree we all say distance to axle because it is easier but then when you try to compare cars with different axle placements, you are out of luck until you figure out where the COM is in relation to the center of your car.

Actually, wouldn't it be in relation to the center of the wheelbase?

I do see what you're saying.

JT
 
not wheelbase, but center of mass because your car starts at the peg with the nose of wood against the peg, and the height of the center of mass is how far up the ramp gravity will accelerate your car to the bottom of the ramp. The farther up the ramp, IE the farther up from the center of the car, the faster it will be going at the bottom assuming your car has reasonable friction and steering.
 
n physics, the word centroid means the geometric center of the object's shape, but barycenter may also mean its physical center of mass or the center of gravity, depending on the context. Informally, the center of mass (and center of gravity in a uniform gravitational field) is the average of all points, weighted by the local density or specific weight. If a physical object has uniform density, then its center of mass is the same as the centroid of its shape.

So the wood block before we cut it has the center of mass at the same point as it's centroid. After we put in weight, the centroid stays where it was because that is just using length and width, but the center of mass ( also center of gravity the same thing) gets moved due to where the weights go.

dazed
 
So, is the 1/2" and 3/4" com you mention above measured from the center of the car or from the rear axle?
 
it is all personal preference , but to avoid confusion most everyone just measures from the rear axle forward.
 
John Thawley said:
Mine is measured from the rear axle.

JT

Ok good, that's where I measure it from. I think there are two balance point measurements that are helpful to know when building cars. The first is measured from the rear axle and the second is measured from the rear of the car. The first gives you an indication of how stable the car will be (is it going to pop a wheelie?), and the second gives you an indication of how far the weight will drop before transitioning into the flat (the further the drop the better). Both measurements have helped me when building cars.