taken from: http://www.phy.davidson.edu/fachome/dmb/PY430/Friction/lubrication.htm
my notes are in {}
Lubrication
The modern period of lubrication began with the work of Osborne Reynolds (1842-1912). Reynold's research was concerned with rotating shafts rotating in bearings and cases. When a lubricant was applied to the shaft, Reynolds found that a rotating shaft pulled a converging wedge of lubricant between the shaft and the bearing. He also noted that as the shaft gained velocity, the liquid flowed between the two surfaces at a greater rate. This, because the lubricant is viscous, produces a liquid pressure in the lubricant wedge that is sufficient to keep the two surfaces separated. Under ideal conditions, Reynolds showed that this liquid pressure was great enough to keep the two bodies from having any contact and that the only friction is the system was the viscous resistance of the lubricant.
There are four essential elements in hydrodynamic lubrication the first two are obvious, a liquid (hydro-) and relative motion (-dynamic). The other two are the viscous properties of the liquid, and the geometry of the surfaces between which the convergent wedge of fluid is produced. When considering hydrodynamic lubrication we must be very careful about how we treat the viscous properties of our lubricant. Since the only friction present in a hydrodynamic lubrication system is the friction of the lubricant itself, it would make since to have a less viscous fluid in order to minimize friction: the less viscous a liquid the lower the friction. Too low of a viscosity jeopardizes our system though. We have to be very careful that the distance between the two surfaces is greater than the largest surface defect {why polishing is so important}. The distance between the two surfaces decreases with higher loads on the bearing, less viscous fluids {part of the magic of DD4H's modification to Krytox}, and lower speeds.
The surface geometry is also very important. The surfaces have to be such that a converging wedge of fluid can develop between the surfaces, allowing the hydrodynamic pressure of the lubricant to support the load of the shaft or moving surface. This is obtained in a number of ways, a common design other than the shaft and bearing {perfectly round wheel bore and axle}configuration is the tilted pad bearing, where a tilted pad skims over a sheet of fluid.
Hydrodynamic lubrication is an excellent method of lubrication since it is possible to achieve coefficients of friction as low as 0.001 (m=0.001), and there is no wear between the moving parts. Special attention must be paid to the heating of the lubricant by the frictional force since viscosity is temperature dependent. One method of accomplishing this is to cycle the lubricant through a cooling reservoir in order to maintain the desired viscosity of the fluid. Another way of handling the heat dissipation is to use commercially available additives to decrease the viscosity's temperature dependence.
We also have to pay special attention to the extremes of motion, when using hydrodynamic lubrication: starting and stopping. When the surfaces are at rest with respect to each other, or at very low speeds, the distance of separation is theoretically zero."