There are solutions that dip below the flat. The parabola has to dip earlier than the best solutions. We do add the extra restriction now that we have to manufacture this track and not go below the flat. Below is the parabolic answer compared to the correct answer at the restriction of the flat, and below that we see a nice long track with both if we could build such a track..

We also add the super Kinser in green, a drop below the floor, roll to the finish and hop back up again, and a super BestTrack in cyan that drops below the floor and hops back up.

l2Pe7wlOqHG6mJuqbkTFK2Uw1xZZ0dyR6o0BHpVL1dWUlH6nHWPBt75LPUKVmyW780kg9sMVw50rry8oi1/7ui8ibLeUZXzmKvW9kBibk7ffXoDVvGS6ZTeu4WGxNPYjGP7s8kThP1PmtNWwSzciappyOFJznSQVV1pN4pNW0ZmEPFkuuHyFbnVwNbDFeO7cqmZsxlV3aeQlM/i+MYs1nt/e5DT2F4gen5046TasyDlg/tySRyE3U9a6Mm06Q8eSu1ZuhMcqRDOw+koYkm70jZqiU3ubIx1blyfbfwFsOVJ3Bl02zM9TPXdM1EmDGXt1R2kD1oaz6B6bW02Ph5Rm6c8qE9mcRvok4p1X8dNZmQlGJ2JI94zE5VP4qGJpq+I7ks2X2gMFcOaTFcOeq68sqh6668eK7P9R1hrlMYYMwD15XtcZ3PVvS4BrquvbV266YEwnOb77qy8Q5bgk3UKSXT/az16FS917kDU/IrDEnJo1/8HG1d2ZlDecu0HakiO0FHarBkt/iqKw9pMVx5cldeMeaskytbFbGUjo9S71hSI0X4J6Pqh/Ck56lFJKWQhPM8790snVLylD9SE7Wm5Dlia0r9OtVwV/ak1KowJKW6eCWH8rVW3qereGtKntpHaqJOKWUd+7azMQfl47Xk6iFW73cOaTFceTJXNvW57uK8dtPxGrO2j/3whboxpRJOidJiSiWcUqNOgyU3shi9h4MrT7OuvEygbMz9zmvAfWwAAAildO86+CW4shCTu7LBmAEA9NC8nOx9Fa4shAZXNmVX7X1qMWYAgIH0s2SDK8sx7bpyNZkRjHk2qzjTSWnTEZRKOCVKiymVcEorOj1uXC9fiysLocqVjSm5spAxq74GdEhp0xGUSjglSosplXBKS50hlmxw5WGsPLd+bic7t1N5lj1fYF8SbYtzutxNZ9G3Jqwizha7MTEdsxgp9Og4y0xDhy1sMWbFkvvplAftIfmY9XTlMkrWlcsMvY9t3LeyAQDAwcBZ8rEIc2UhFLqyMYNd2WDMAAABiFiywZXl0OnKBmMGABgbKUs2uLIc2p72WtE5/g7OAUJyxixcmiYpbTqCUgmnRGkxpdJMqfeHoNxquLIQql3ZKDJmRdeStJQ2HUGphFOitJhSCaYka8kGV5ZjFq48xJjz0lPZMikNI8HLW1pHUCrhlCgtplRqKYlbssGV5VC7rrxk4coaZswAAPNmDEs2uLIcM3BlgzEDAEgwkiUbXFmO2bkyxgwA0IfxLNngynJoX1e29DXmqlRfY1axGjSOlDYdQamEU6K0mFIppNRgyWKl4cpSzMuVTXdXdUn1MWYu72g6glIJp0RpMaVmn1LzLBlXxpUH6PQy5gapzsbM5R1NR1Aq4ZQoLabUvFPy3rjGlRN35XHJ+s+YXWqsMQNA6oy6lrxyIFxZiDm5slk58RgzAICPaJZscGU5ZubKxm3M/TscxgwASRLTkg2uLMec1pULaufe783tKYUZMwtU0XQEpRJOidJiSs0vpeD5BuvKuLKEThdjDkopoAev7+UdXUdQKuGUKC2m1MxS6nILEFfGlSV0Gv6TR2dXDE2prR+v6eU9hY6gVMIpUVpMqTml1HFVDldO3JXj0dADBi0Ts8YMALNmwkEMV5Zirq5sMGYAgBLTDl+4shTpubLBmAFg3Zh84MKVpZjlurIlwJj7pOTq3+u4QDWRjqBUwilRWkwp7SkNsGTWlXFlUR1vP5CdMa/L5a1AR1Aq4ZQoLaaU2pSybOgsGVfGlaV1woy5T49dfWXyl7ceHUGphFOitJhSOlMabsmC+eDKg8jKnNvJzu1kq+QL7EsCt5jVcxxDZ/EpqaZ9ysbcOZ/FKysdt3ddgjpsYYvUFrsxMZ18khGpbUu9zH46ZUvWkE/ZlQfms46uXGbGT3tZAt6jSc2YAQAmR2SWLAxzZSlScGWDMQNA+iyHIoWDEq4sxezXlQuaO0RZqnw3u1t/lrsGpJpIUEqbjqBUwilRWkwpDSmNZMlipeHKUiTiyqaxT9SlpjVmDZe3ch1BqYRTorSYUpOnVLdkdaXhylKsoSsf797RZPM8FzHmyS9v/TqCUgmnRGkxpaZNyTlLVlcarixFIuvKBR27xaAZs6oVHQBIlKofqx15cGUpEnTlXsY81TIzAIATxxRZ85iDK0uRlCubPj0DYwYAbah+3NoJrixFOuvKltXOESjV2vMdOr2uloTXzBIuTVBKm46glDYdQanIKYVYsrrScGUpcOXl67wm69bpbswJjzgJlyYopU1HUEqbjqBUtJRWbt15hxd1peHKUiToymalf3SS8tzNbtTpaMwJjzgJlyYopU1HUEqbjqBUhJSq36bQNrCoKw1XliK1deWCAf2jzzeNzGXhBwBUUh1z5jik4MpSpOnKRqCLdPPmOV5FADA1jnFmpoMJrixF4q48iTHP7nICgClonCLPcQzBlaVIc125YPE/PA6VEb2bnfCaWcKlCUpp0xGU0qYjKDVGSo1T5LCxRl1puLIUKbuyEesognezEx5xEi5NUEqbjqCUNh1BKdmURO5aqysNV5YCVw5VEjLmhEechEsTlNKmIyilTUdQSkSn8iTpwIVkVaUZgyvLkey6skWur5hOT2jPd30IAKRpHDqSGShwZSnWxZVF+zzGDADhuEeCWT/bVQdXliJ9Vzbyrnys2smY07jwAKALjQNAeiMDrixF4cpSxqxuqcNKDe4xzpR6TJpTXTMT1BGUSjglSosp1U/HOT7kua7/qV1KR9BK1tqVbTsmH4UrT5rA8XU4eVMQBDFhrMNQMNCYcOV1CYyZIIhpY00GgYHGtI6unFkqrbkgX2BfErjFrN4PmVxn5ebM4ktFhup4X1W+Z+Woa/XO1ZC62MIWqS12Y2I6edwRqXK/urqP63Z273yczTWhTsVKBuazjq5cRurdzTwY57Gv6kH8i83pPeUBsPZw1Qtaybq7sjEmS7ejVBnhU1KNh/Jfg6lfogBrQrvhrsnFzjPYggi6cuV+yOQ6Dqm+XadHSo1PYFb+3BdtrT3iWZtaR1BKm46glDYdQam6TuVbQcItWVsribU2rizIermy6dl7+qVUv3RXdIYZs7bWnsVgOrmUNh1BKW06glIVnW5+vLqHtlbClXHlqDpuqYiuvDzmCF8moK219Q+mGqS06QhKadMRlLI6nb+ioLaftlbClRN35dkQa3W5ethWbwYAfYTer67svVbgyoLgylGP3HR5r+eVDKCePn68hhcyrizIOrqyKT2PrSjKV//kyRAE0Sm4fmXGZlx5/daVCybvvo2x9hc2QcwvuGyNyWQGbVx5XV1ZjY7jnnbYTTD9pU0ulXBKlDaSlPN+tU+n411rba2ksCPhyriyFh23MTefnRmVNpVUwilRmriU55prvuXWeSFZWysp7Ei48rquK2ulx6QZAHrT7flq5ytBFFwZV9YIxgwQgaF+zIU5ArgyrqyawLvZANCJ/lcV1+PI4MqsK2vXaZo0J1Da2FIJp0Rp/aT63a/m6+tjSuHKuPI8dCqT5iybPqWRdASlEk6J0rpK9V8/LnSEpsjaWklhR8KVceW56ZSMWeTUKSpNWirhlCgtUGqIGS+Ru2utrZUUdiRcmXXlGbJqzKxwAdTR5scQCK6MK8+T1bvZjBsABTJmXNeCWODKuPKccRkzYwisIfVLAD+eKbgy68qz1FlKrQ4fPQYmvaWp0RGU0qYjKDWVjqfP90yppkVrx5TClXHlWepUpWoDUrg3ay9NgY6glDYdQanIOiFvQDun1CBHa8eUwpVx5VnqOKRcA8ooI1dgPgqkEk5pnUsLvyHULaVmxXVu7fhS6+jKWRv5AvuSwC1m9cRMrlPpJSnpNG5ZDCuVfeqj2ChHZ8sMt9iNynXqZtyqbP/1H70sOkQn6Fi1MtPQEWyfdXTlCjztlRrNb/mFn4gBGBlnjxXutFwMysCVceVE8Q402DNoJoYZG/xYKbgy68qz1AmSCht0pMa+hM+aoJQ2HUEpER1ZJ/al1OUYqba2oI6gFK6MK89Sp4NU2+hjdQaOhgmfNUEpbTqCUkN0RpoWu1PqfpjEWnsMHUEpXBlXnqVOZ6nmYaii0/vOYcJnTVBKm46gVFedptvUI5bW1/kTaO2xdQSlcGXWldeGjuMRa88wBpHWjP0HBsXgyrjymtFrYMKhYQiTOXH98KAeXBlXXj8GDFJNwyudCMp4+knUrkIfnSG4MuvKs9QRkBo8Wo037CbY2lp1BKWknFgmH9EeqbC1tekISuHKuPIsdcSk5EYuQXtOtrX16QyXEn9nJlCa9PxYT2ur1RGUwpVx5VnqCErleS4yhJXzGThnSry1Nel0lYpwa3pQaavZzL21Z6QjKIUrs64MxpixnohRsbgIg9GyTuxBY07QB1wZV4YS449r2gd3mIUHl9GeH3QDV8aVoUaUMc4/9NMrY9J6LpSejhmkCJ3BlVlXnqWOoFSjTsfxbng+Id7QqbfOqbWj6AS2cL8hIXZpAelqO2uCUtp0BKVwZVx5ljqCUi06weO0eGnhFtKU3fxaW06nU+uJjAHxmig4b21nTVBKm46gFK6MK89SR1BKahCMVlpkswlJaUKd4e6rtjQHHc+uttIEpbTpCErhypKuDCmjewGvqzkpLmWF3nXpL60bKdcGK+DKuDJ0YW4j4xBXm0skznpVC7gyrgw9SGignNxT1910PdAQawmuLOnKCS91aNMRlOqvszpoJlXaaFLadASlxFKSe2OirjR9KSksDVfGlWepIyiV8NcOp9naojqCUsIdSaI7KSpNWkqbjqAUrowrz1JHUGqUKc4w1JWmL6XUShvnZrWK0saR0qYjKIUrs64MorAQCJ1g8RhWWUdXztrIF9iXBG4xq2+XJtepvHdLSUf5lvqSs7YM2WJKTKDjvVktVan9V4mOs7nS0BFsn3V05QrMlWEsmAZBHZ4yBy+4MuvKs9QRlIqh03EU1laaoJQ2HUGpdp2wbjDL0qJLadMRlMKVceVZ6ghKaRuUo6YUXUqbjqBUo07HyfGcSptOSpuOoBSujCvPUkdQagKdtjFaW2mCUtp0BKWqOn2/EmUGpSmQ0qYjKIUrs64ME8HiYqqwcgwDwJVxZZgaRvA0wIxBAlwZVwYdMKbPlL53qgGc4MqsK89SR1BKm47gEE9rjyg1mhlPX9poOoJS2nQEpXBlXHmWOoJS2nSWUoMHfVpbXqrZjGdf2vg6glLadASlcGVceZY6glLadBxSPM07mk6QlLP9a6dglqXF1RGU0qYjKIUrs64M84ElzJiEmTGALLgyrgzzBMMYA5wYpgZXxpVh5mAkA2lqQNoQpgBXZl15ljqCUtp0BkmNZjDaWmmQjqeVFDzxrqIjjaMjKKVNR1AKV8aVZ6kjKKVNR0xK1Hu0tZLAg9NaP9GkriMlnZLC0nBlXHmWOoJS2nQEpVZ0hjmTtlby6bRWulrsnEqbSCrhlBSWhiuzrgxrSYh16b80AqvQXwjAAlx5elc+Ojq6evXq4YIrV64cHh5evXp12qxg7Qh3uJhW1yOrqa9ogCHgypO58tHR0fPPP3/hwoV/+qd/euqpp772ta89/vjjX/nKV5544onz58//y7/8y3/8x3/gzTAx/UwxZgCkBa4s6cqB6wpHR0cHBwff+973HnvssY9//OO/+7u/++u//uv33HPPnXfeubOzc/fdd992223vfe97v/CFL3z3u9+9dOlShJRmpyMopU1HUGr0lKbz3YRbO+HSBKW06QhK4cqxXfnw8PDf/u3fvvzlL3/gAx9429ve9opXvOLaa6/NavzET/zEzs7O7u7uU0899Z//+Z9HR0fjpTRHHUEpbTqCUgmnRGkxpRJOSWFpuHJUV75y5cr3vve9T33qU7/6q7/6kz/5k3UzrvDKV77ygQce+OIXv/jcc89duXJljJRmqiMopU1HUCrhlCgtplTCKSksDVeOt658eHj4/e9//8EHH3zTm950zTXXtFpywYte9KKTJ0/+2Z/92T/+4z/+6Ec/6j1pBgAA/ayjK7caYb7AvuS9733ve97znne/+932Sen3Lyhvsf/W97l8+fL3v//9t7/97VtbW4F+XOaGG2648847v/KVr1y4cOHy5cvOo8HEyKAAABrJSURBVDu3FD9funTp8uXL73vf+yp11Stt2lJuwPBXjafDFrZIbbEbE9Mpflal4ywzDR3B9llHV67gmStfvnz5mWee+fu///uHH374k5/85F/+5V9+4Qtf+PKXv/zVjjz++OOPPPLI+973vjvuuOPHfuzHerhylmUvfvGL77333o985COf//znH3/88cDj/s3f/M0jjzzy8MMP/+3f/u358+d/8IMf9LsTDgAAEcCVG135v/7rv5588skPfvCDb3vb226++eaXvexlr3jFK2699daf//mff9Ob3vQWFzfddFN945133vmLv/iLP/dzP/fiF7+4nx+Xuf7662+99dbXv/71Ozs7zhzKx33DG95w44033nLLLa9+9atvv/32++6770//9E+/9a1vHRwcdG2lypvK3kjpCEpp0xGUSjglSosplXBKCkvDld2ufPny5SeffPKd73znDTfcMNxK9XDTTTedOXPm29/+dtcZc8LXgDYdQamEU6K0mFIJp6SwNFzZ7crPPPPMBz7wgZe+9KVT26g8N91008c+9rEf/OAHnVop4WtAm46gVMIpUVpMqYRTUlgaruxw5cuXLz/xxBMnTpyY2kDH4r777vvWt77FAjPMF4WDqWBKsM7gyg5XvnTp0uc+97lXv/rVU7vnWNx+++1f+tKXLl++PH7rAgBAB3Blhys///zzn/70p2+88cap3XMsbr755r/6q78a+F2eAAAgDq7scOWDg4OHHnroZS972dTuORY/+7M/+8gjjzz//PPhraTwLp+2lBIuTVCK27ytpH3WtKWksDRc2eHKV65c+dznPveqV71qavccj9dn2f/Jsiv2+/83Ng62t83Zs42t5OxwW1u2DUP/C5/Ajru9vRS0R6kfS+T/Dep0LVWSaU2snuTmpskys7kpllIEHUEpbTqCUtp0BKUSTklhabiye1350Ucf/Zmf+ZmpvXMsTpz45Sz7RpYdFqXv7x9bRZaZ3V13K9U73OnTK3Yo6MobGwdWqvhhf39lh/395eEqf+pB+LVUKblClpnTp5c/l1uj/EJcWZWOoJQ2HUGphFNSWBquvHau/MIXvvD3fu/3suw7WXbVlm59bmMj6AtGCpvp4cphZ6RdKv7/rlsvuZ5S+ed6+4AgCgdTbs6DCLiy+5NRf/d3f3f77bdPbaCjcPPNN//5n/95lv0wy478RrK7a7a2ltu3t4+3lzdWJrVZZs6ePZ7sbmyYvb3GZt/bW+psbS33DLw1HeLKe3vLewB2FusvrfyqzU2zt3d8CGfJHpp2a2q0ervZNwEbGwflZvQUBQAJgCu715W/8Y1vnDx5cmoDlee66677rd/6ra9//etZ9nzZNupz5ZMnlze0z549/qu97+qcCxZx6tRSrek+rd1hd9fs7lbvRYvMle0hbPL25ry/tMLz9vaOLdkeotPs3LNz5U/ldrNHLKLIs/Dp1qIAIA1wZYcrHx0dPfPMM3meX3/99VPbqDA7Ozuf+cxnLly4UEyUs+Z15eLXnZ2VXz0W1bpDQXGXzz7MVd7ZTlhFXLl8COdbCn9pxV8L8ws8YvkGZg9XrvxazIMrf/UU1ZrSQLjNG420z5q2lBSWhis7XNkYc3BwsLe3d99991177bVTO6kYP/VTP/XhD3/4u9/97uHhYXlOli2ewS7fKS0M4NQpY0oTSilXDnQm71lr2adSYN3bmkqzb1Aqt44ju7L/13pRrSkNRNsgSGkxpRJOSWFpuLLblY+Oji5evPj5z3/+N3/zN5P5Nuy3vvWtjz32WPGVXiFjulk84mSNao6u3LU0U3oIPMscC95NxHTlQBSOONp0BKW06QhKJZySwtJwZbcrG2OuXr367//+70888cQHP/jBnZ2dF73oRVO76lDuueeef/iHfyi+/rp1fN/fPzan4saylCuH7NzblYtl18oO9Y9O+UsrKH9gOjArQVe2Uk07B34eTOGIo01HUIqb8yACrtzoysaYo6OjS5cuPfvss1/60pf+8A//8N57782yV873nvYb3/jGr33ta4GubCeRi1aSdOWR1pWLx6MK7FPT9QeVW
0srvk1lZ6f/PHWkubKnKABIA1zZ58oFR0dHly9ffu6555566qk/+qOHs+x/Zdm7suy/33rrrTfeeON11103tduGctdddz3xxBNXrlwJ+RYOu8PenmPiaO/xFh8xMh1deeAz2OX8LZXPE9sF4+Kp8tOnHa7vLC1brCgXT0Tbx6nqJYekV2/eIa7sKQoA0gBXbndly+Hh4aVLl77xjf93993PXXfd/82yr2bZ/86y/5ll/+Paa3/5da97w/XXX/+Sl7zkmmuumdp/HVxzzTXveMc7nn766fIXbXr8z5rc1tbyo7TZ4uFk+xke+6HeilqTuL3L1/vzyvXkm15i/T7LzMmToaUVbl3kVn7CuVJyncqSuTOl1sxbm7GpKCfc5p0jaZ81bSkpLA1X7uDKlqOjo6tXr165cuVHP/rRhQsXvvOd73zzm9987LHHfuM3fuNDH/rQb//2b7/97W+/55577r777iz7b6997Vve8pa3vO51r7v99ttvu+2217zmNVtbWz/+4z/+ghe8IKYr33zzzZ/4xCeee+65fq2U8DWgTUdQKuGUKC2mVMIpKSwNV+7jymUKhz48PLxy5cq73/3uCxcu3HHHd7Ls/Obmk1/96lc3Nr5a5vHHHz937tynP/3psnnfddddb37zm3/hF37hNa95zQ033PDCF75Q3JJ/+qd/+vd///effvrpYlG5BwlfA9p0BKUSTonSYkolnJLC0nDloa5cJs/zo6OjLLuaZYdZdvg7v3P4F39xWKE8wz5//vyTTz5ZuPUXv/jFz372s3/8x3/8rne967bbbrv33nvvvvvuu+666y3BvPnNb/6lX/qlO+6447Wvfe2rXvWql7/85S9/+ctf+tKX/sqv/Mqf/MmfnD9//uAg6Duum0qTaiIRHUEpbTqCUmmnBJAkuLKkKxfYZUvPg7J2hl1x6x/+8If//M//bN26B4XB//Vf//VnPvOZT33qU48++ujXv/71f/3Xf+09SwYAgGisoyu33u/NF9iXBG4xq1OBHjpHR0d/8Ad/cHh4+P73v98a9vsXhG8pbqe/5z3vKZtx77oq8xsNOmxhi9QWuzExnVxiRJLVcZaZho5g+6yjK1cQnyvDelK5wjVIJZwSpcWUSjglhaXhyh1d2fuhouOz4v/ISwB5nofv3JhhOaW23YJS6nT0hoYa6xrwf5qqVafvaxvzGUbCI442HUEpbTqCUgmnpLA0XLnXXDnclesvCWDGruwUL/064jWAK4+mIyilTUdQSpuOoFTCKSksDVfu68qmwQa6z4wTZNibErGDxnntAoWXd9opASQJrhzFlQO/wGnIzs7XVrY03Vj2H6JcWsN96cY9PVucgiHJNCUQklvTX0PSAwAYH1x5gCubBs9o2h5ivZ12DnytXzMkH7ul/nNT+4SU36lxer8qpIRO6QEAjAauLOrKfrcOMcUxfh37EM728e/f43DTtmGAK6d9u1hbSpQWUyrhlBSWhiun7soR8nG2Tz08+QTq48oT6QhKadMRlNKmIyiVcEoKS8OVh7myaViqXAdX9rdPgI2t7DnE9aUq8rwPwJWVpURpMaUSTklhabjyGrhyiE93svbWFgvZrbxPuCuHv0qw0cLfZAAADANXHuzKJswIp3JlZya9XxVIq431eE/Q9VWjtiEAwDjgynKuXN+i0JWb5n+Bv1bC0z7hO9QFQ1zZ86ryDvWX13/2lx9SLwCAELhyR1dusqVWA/NEp1eZBvsRjE6H8LePx8wG6ock6T99/nMamE8JhQtUCadEaTGlEk5JYWm4suF/pwiiu0utGwov74RTorSYUgmnpLA0XBlXDsAz34UFCi/vhFOitJhSCaeksDRcGVcOoOluMAAAiIIr48phcO8aAGB8cGVcGQAAtIArS7pywksdUigsTZuOoJSgjsKURHQEpbTpCEolnJLC0nDlzq68/dHt7Ey2/dHt4tedB3fsr3meZ2eyLM8q/3YSMa6z65T1H6JJysnm7mZ2Jtvc3QzZ2c/W7pbnr4LXgLMdNvKN7Y9un336bLhOnuc257Ja13ycpRUnutCstIzzVHqkeuDR8ZymelaVjl3s1q/PDCnN0/83dzd393bDpcrlR2ht2w3sNd5PRzClSXQEpbTpCErhyp1duTI2lX2xOCv7F/ftxv2L+11FTIMrn370tPO1px897bEQKVcO1Dn96GnPW4RwnRDyPC83tTFm/+J+UUh2Jgsfo3fO7JQbsPWNjiefypaNfMOeqeKHSn9o6ipjjzj+05Tl1c5m58rlF8Z3ZbPaYsWW3b1d286nHjoVIlIpf+zWLtLb3dvd3dst3jj20xFMaSodQSltOoJSuHJnV97a3cry5WDkHJtaR/YQkYqgR7yHhYxB8f4gcjKV1rCj9saZlrGvoJ5z77lya27ufeQOF0jraWrpbBFTdeJs1fBmjNxLi3cAlfff9k0PQJ30XTmrUd+hk+Cph06V35WfeuhUdqb6Jr11jKi8yinSRJN45R5jcVfcOv3u3u7W7pbdp3wnzXnbdm9/73jeWRtE9i/uW6nN3c29/T1TvM9w3VTf298r3oIUt3CLnctVFHvabOsi9lfnfWmnbVRqaardJlZ+if317NNni1nORr5h064TUqCnJ4Q4t+dceE6rfVVxjopDOEv2ENjZyr9W2s26YKUZ9/b3NvKN4k/lok6ePZmdyU6ePdkppfpbMWejNZXvacaB2COWk/ev8sCak7grOy25vrFCvsDqlLcUs7H78/uLLcV4t7e/V/y1+Nde3k06hUjxqjzP78/vL361Ck1Hr4hX9rF/2t3bveXMLXY4KEa6E/mJPM9/7cyv2aU4q1xJ+IEzD1hnKv5UviFcbNnOt48H1sWrygZT0dnd2z2Rn6jcxS1nW2SY5dkDZx4ob7fK1pL9rVGeKxdb/LXXc7ZbTj10yuZv39xUjm4PdyI/UdyfLEpwtqrznLbuUz8XJ/ITxQ7l0uxfi8LzPC9Ozd7+XtG76sslnj5Wb43Wll9aWr5tj1j8a7ticfO2qag87Nqp7HAiP2HfBNir0p4Xe8ZtB66/DbLNaIypNKPn6PV/7W7lV1UOVz96veWdOv22GO9IEl/HWWYaOoLtk4grO83V+Vfna8MOsqRyq7k8ZB9rBkyAmkTM6gVQxyNu/1QY/Ea+UYyDxfadB3eaFCpb7MMppjYL2f7odnnPk2dP2nWyumxZx+5gJyL1bItGsCNj8evpR0875y756iBuyuvKeXUUbqq9tSn8c8pygfliCK4X6HytZ59yB6ifC9tVQkor/lo0aUhFTenV+6S/oexfi3mq/Wuh4yjqzHFR7XPliiMu2qS8MN/aaFnt5orn6gjEedl26k4enX5ISSWcksLSEnFlP+Ku3EQnVw7RceJz5do1Xx4Eizvk1vPqA1N9SK1MBczqE0ytiQUO3HUp+9BWcTvUee+64sp2Nrb90e3ynVJ/7fUW6zSMVuZJPYbgVld2mlBIafYNSuXWcafO2cGVw86186xleei7hPqB9i/uWw+2/cTTgesnZfPMZpb7ro5AcOWYUtp0BKXSd2XxdWUP07uy6/6Y/blY4Suv3Ta9sMndW47e6nDBI1R5utzUjPW5soem2sPfoDhlyzs7XDlkruxqBKcrdy3NlN5CZYsbEk1HbExv8Fy58tdOZ82dkiv/4v2K57ZNU9pm0drFY1nOZnQevf4vrhxTSpuOoNS6uLL9YVRXXmq6LuxirWsk8eM/NVzz+xf3iwG6uLkabkX1T3bVR3nP0TsN3BU2zhw/CuR/9KZ1fD+uPXfXLjhX7vpaT/7lrmJF6uei9bSa1Q9Me47YmF5zCZ1qb9q56aODvpRc+XfowLWKqs3Y5V1LKzztBV1J35VbGcWVXRd2sWA2kvjxnxoGXDsDaNqtommHkvpHODx/qicWuK7sLNM+u+v/5HGrx/hr7zq/r1AtcPVtRG9XLncVT4O3llbc0S2ebw98M1RNL9yVw+bKrUWJPIPt66W18luvjiFUPojVlBWABVeWd+X6Fx0YuU9J+r+ipGkMLU9w7eNaHisqP4lqVp+32tvfK/Ys7haeeuiUfeNv75cWnzM5znbhrPYR5foz2E3FFoItrdE8lQyp3c7Ibc6dJvQDCyznbzdWuornXPhLyxYfRipOmX3cqX6afOkFd7ZOJu0ryvtWppxScbem/Mk0e/8mRH95xtuujoEUt2rCv0UE1hxcWXhd2V7hTf8G6rhT9QpW/lSWsl9lsLW7dfbps3YUWz53WhuJrMcUE5dySvYDqVm+Mqexhm0/xGxqH+e9P7/fWYuz3pNnT3puXwc2rzW5Ze1nsmzxcHLxwbYsX36ot6LWmmTvzyuHd5XKufCVVjqt2Zns/vz+ot7yE/7O09S1eVszr9Reb4qmojxz5aYjbuQbOw/uVN43NOnXyy++3K2ph4TjWVbkGzfFpbTpCErhyvzvFMYEzOomKS1r+OaQHlIetOkISiWcEqXFlEo4JYWl4cpr7cr2CefWu3bRSisWQYtbi/7vWNbW2gov74RTorSYUgmnpLA0XHmt/39luw4afnstTkrZmez0o6c7/ddPAAAJgCuvtSvbhckeq2gjYVPiOVUAWENw5bV2ZQAAUAWuvNbryvPVEZTSpiMolXBKlBZTKuGUFJaGK+PKs9QRlNKmIyiVcEqUFlMq4ZQUloYr93XlbWMyY+zTUTvGZObZrWcXoq4I5vjsbpdea7/soelbH5xHzMzBxoHZMmbwU1M9O5yrlUzTI2VN+W+78/elZFspoP27leY8Kc3596NPa7s6xrFOQ9+oJrlpTGZMw2PvowyCnpQ2jdkN1jHN10XXlAKx3aDUmRP2iYRTUlgartzXlSsjWn0U3i9t7Pxdv+Zg42ApaEVOewf6/VoaeyUd7xg3Fq2tVKFSwv7CKjrlX2mlYQZZxn1Sygw76f3xd4zMmNOln8utUX6h15XHot5pd0vtfCpMxF++l4ONA9PxscLj9HaN2V28cQSQA1fu68pbq0OYc0Qb4gf1154OUGt+czDN2BHSShUqJXTNv95Kcq4cJCV4uEBaO4a/NWKm6sTZYuHNGHJdeNgr3dFp/KKz5sNlq296AAaDK/d15VOr7+Urvx5LB4wXe6XpYH1CY1++5droKCZ4gNtd1dyu7ZwZc3YxLdgwZm85Hh1sHByPX+Wd7WhV/qrEkFZqLaG+pSl5Zys1ldPEXklnq7RnSPs7s3Ueon7S/aWVX7VpzF7HjtGaXlOjhXQDf1Ena70iJCV7CL9+U/meZmzitDnYODAbbRa7tXog208AhMCV+7pyMYezo9KeMZl58P4HV6XbBkp7++7s4oddY4r1iRBzqlPbZ/eB3eMt5RnqyeWxloferImcWoz+Nk4ufthw7XxqpYqmVmqZkVRKqM+VF8nnee5Lvi54qtTgpdZYWQ3aL5Wwu/h5v1m8RHURt4mGk95e2uai9fZWD9F8RMdClye9rEE2pBt4ilqVbU9p1/XmqaZ/7sS5xor83dvfSq1T56ZWSnqlM+GUFJaGKw94Bnuz+mv1rLQO0NulHUpjh5gr7zXMDot9dhpe1fTr6bad7dBZnjqstlL7jeiKYH1deZG82wVb2622w8pZ23btXL+R4CLUlRtOemhpxVk7G9GVK786u4GnqNW5si+lcmyuLszX9C9uXmysyN+9azhSsh2vDq6sQ0qbjqAUrjzmJ6NaB2jneCTiyotwP8xSjHHFneSzvoFm6K812jtuPf/KrGWR/MqEUsqVB1QX6soNJ729tMUblOqt4+YjjuLK/l/rRXVNab/kwWdr+9T164fzd29/SsyVx9QRlNKmIyiFK4/53V7hA3TIn1rVKvvYBbDdhp2LBcJN30Az9NceBCoUq4CtyXfNcHh1Q056QVNp5YfAM9eCdwhju3IPnK/NjCkvW3S6UgqauncTgevK4h0eYBVcObor77su6fqnaIa7cnkQr7zr31/8adulrNyVOyXfNcORXDnwpPtLK9julZU/Peef+v3a4/Ngza7c80oJaUZL12ewedoLRmYdXTlrI19gXxK4xfhvhxqT5/n+LfvLLYsrfG9nr6JTfu3xgWpb6vlU9lk+6rX6KuvWzlcFjr+VPFektpozLOFuw9XD1fdZ+dBwaz5NGWbuoz+79WxdvP7lML6e4NqnOOnHW0onvaLTVJr99aFfe2jZhRrOV0tfrbdPQ8t3O++rRdVr379lv3ys1hYrtiznyg1XivO6KDdja/sUSzy+FqtsOb1aeKF8ejWlEJ3mLVI6eW1EmlzHWWYaOoLts46uXGGsdeX61yOYxV0yu+Xs6uhz+vjdfe5aV175PhDne3PXV1g8eP+Dx1s2XPc89wLmXoG/bpc+HLUb1kRhJVRZ7PDg/Q/Wk3e0kj9/2WewB5z01tKMXVEunohePE7l6RjV1vY375BuEFBUe0pF/yx/Ms322Jq+43v06mfc2b1rtPTJGk3fItJVRyqfCFIJp6SwNFx5HFfO2sKyW9poP9Pp3Nl+OmXTdaut4Sh56d39Us1uKb6M0w6CO65DB/5qvcfzyVR/x/U3lGWR/MXNi9Xk663UWk49pd6fVx540ltLy0q5lZ9sb+4YK6X5U2rNvK0ZG4vyPIPdcLiDjQOzU3vfsKq/1KmX7+neLvoMpnzj5tRS2nQEpXBl/neKYToelxozH0EpbTqCUgmnRGkxpRJOSWFpuDL/v/IwOroyAAB4wJVx5WHgygAAcuDKuPIAWpdaAQCgC7gy68qz1BGU0qYjKJVwSpQWUyrhlBSWhivjyrPUEZTSpiMolXBKlBZTKuGUFJY2A1cmCIIgCEI2cGWCIAiC0BK4MkEQBEFoCVyZIAiCILQErkwQBEEQWgJXJgiCIAgtgSsTBEEQhJbAlQmCIAhCS+DKBEEQBKElcGWCIAiC0BK4MkEQBEFoCVyZIAiCILQErkwQBEEQWgJXJgiCIAgtgSsTBEEQhJbAlQmCIAhCS+DKBEEQBKElcGWCIAiC0BK4MkEQBEFoCVyZIAiCILQErkwQBEEQWgJXJgiCIAgtgSsTBEEQhJbAlQmCIAhCS+DKBEEQBKElcGWCIAiC0BK4MkEQBEFoCVyZIAiCILTE/weTID3bL9Es2wAAAABJRU5ErkJggg==